ANTIFUNGAL ACTIVITY OF PSEUDOMONAS FLUORESCENS AND ITS BIOPESTICIDE EFFECT ON PLANT PATHOGENS

Anbuselvi .S1, Jeyanthi Rebecca2, Karunakaran .C.M1
1,2Bharath University, Chennai, India.
Email: anbuselvichennai@yahoo.com

Abstract

Antifungal activity of different strains of Pseudomonas fluorescens were tested against some plant pathogens such as Alternaria cajani, Curvularia lunata, Fusarium sp., Bipolaris sp. and Helminthosporium sp. in vitro. Different concentrations (1000, 2000, 3000, 4000 and 5000 µg/ml) of Pseudomonas fluorescens were used and maximum spore germination of fungus was inhibited at 4000 and 5000 µg/ml. The result indicated that all the strains of Pseudomonas fluorescens presented a most significant value against Alternaria cajani and Curvularia lunata. Out of the five strains studied, the best result was shown by Strain 1, which showed almost complete inhibition against pathogenic fungi such as Curvularia lunata and Fusarium sp. at 4000 and 5000 µg/ml while Strain - 5 was resistant against Fusarium sp. and Helminthosporium sp. at 5000 µg/ml. Among the fungus tested, bacterial strains Strain - 2 and Strain - 5 were found to be more sensitive to Fusarium sp. and Helminthosporium sp.

Keywords: Plant pathogen, Antifungal activity, Strain, Bio pesticides

I. INTRODUCTION

Biopesticides (also known as biological pesticides) are certain types of pesticides derived from such natural materials as animals, plants, bacteria, and certain minerals. For example, garlic, mint, and baking soda all have pesticidal applications and are considered biopesticides. Microbial pesticides contain a microorganism (bacterium, fungus, virus, protozoan or alga) as the active ingredient. The most widely known microbial pesticides are varieties of the bacterium Bacillus thuringiensis, or Bt, which can control certain insects in cabbage, potatoes, and other crops. Biopesticides produce a protein that is harmful to specific insect pests. Certain other microbial pesticides act by out-competing pest organisms. Microbial pesticides need to be continuously monitored to ensure that they do not become capable of harming non-target organisms, including humans (Kinkel, 2001).

Fungal plant diseases are one of the major concerns to agricultural production. It has been estimated that total losses as a consequence of plant diseases reach 25% of the yield in western countries and almost 50% in developing countries (Blakeman and, 1987). Conventional practice to overcome this problem has been the use of chemical fungicides which have adverse environmental effects causing health hazards to humans and other non-target organisms, including beneficial life forms. Hence there is increasing concern towards the toxicity and biomagnification potential of these chemicals in agriculture (Frammell, 2003). Currently practices based on molecular biology techniques involve development of transgenic plants which are resistant to plant pathogens, are being used. (Shickler, 1997). Microbial insecticides are another kind of biopesticide. They come from naturally-occurring or genetically altered bacteria, fungi, algae, viruses or protozoans. They suppress pest by producing a toxin specific to the pest; causing a disease; preventing establishment of other microorganisms through competition; or other modes of action (Fokkema, 1993).

A. Pseudomonas fluorescens

The genus Pseudomonas sp is gram-negative, strictly aerobic, polarly flagellated rods. They are aggressive colonizers of the rhizosphere of various crop plants, and have a broad spectrum antagonistic activity plant pathogens, such as antibiotics (the production of inhibitory compounds) (Cartwright et al., 2007), siderophores production (iron-sequestering compounds) and nutrition or site competition. Some species of Pseudomonas can also produce levels of HCN that are toxic to certain pathogenic fungi (David and O’Gara, 2004). These characteristics make Pseudomonas species good candidates for use as seed inoculant and root dips for biological control of soil-borne plant pathogen.

Bacteria of the genus Pseudomonas comprise a large group of the active biocontrol strains as a result of their general ability to produce a diverse array of potent antifungal metabolites. These include simple metabolites such as 2,4-diacetylphloroglucinol, phenazine-1-carboxylic acid and pyrrolnitrin [3-chloro-4-(2'-nitro-3'-
I. INTRODUCTION

Biocides (also known as biological pesticides) are certain types of pesticides derived from such natural materials as animals, plants, bacteria, and certain minerals. For example, garlic, mint, and baking soda all have pesticidal applications and are considered biocides. Microbial pesticides contain a microorganism (bacterium, fungus, virus, protozoan or alga) as the active ingredient. The most widely known microbial pesticides are varieties of the bacterium Bacillus thuringiensis, or Bt, which can control certain insects in cabbage, potatoes, and other crops. Biocides produce a protein that is harmful to specific insect pests. Certain other microbial pesticides act by out-competing pest organisms. Microbial pesticides need to be continuously monitored to ensure that they do not become capable of harming non-target organisms, including humans (Kinkel, 2001).

Fungal plant diseases are one of the major concerns to agricultural production. It has been estimated that total losses as a consequence of plant diseases reach 25% of the yield in western countries and almost 50% in developing countries (Blakemanand, 1987). Conventional practice to overcome this problem has been the use of chemical fungicides which have adverse environmental effects causing health hazards to humans and other non-target organisms, including beneficial life forms. Hence there is increasing concern towards the toxicity and biomagnification potential of these chemicals in agriculture (Frammell, 2003). Currently, practices based on molecular biology techniques involve development of transgenic plants which are resistant to plant pathogens, are being used (Shickler, 1997). Microbial insecticides are another kind of biocide. They come from naturally-occurring or genetically altered bacteria, fungi, algae, viruses or protozoans. They suppress pests by producing a toxin specific to the pest; causing a disease; preventing establishment of other microorganisms through competition; or other modes of action (Fokkema, 1993).

A. Pseudomonas fluorescens

The genus Pseudomonas sp is gram-negative, strictly aerobic, polarly flagellated rods. They are aggressive colonizers of the rhizosphere of various crop plants, and have a broad spectrum antagonistic activity against plant pathogens, such as bacteria (the production of inhibitory compounds) (Cartwright et al., 2007), siderophores production (iron-sequestrering compounds) and nutrition or site competition. Some species of Pseudomonas can also produce levels of HCN that are toxic to certain pathogenic fungi (David and O’Gara, 2004). These characteristics make Pseudomonas species good candidates for use as seed inoculant and root dips for biological control of soil-borne plant pathogen.

Bacteria of the genus Pseudomonas comprise a large group of the active biocatalyst strains as a result of their general ability to produce a diverse array of potent antifungal metabolites. These include simple metabolites such as 2,4-diacetylphloroglucinol, phenazine-1-carboxylic acid and pyrrolin [3-chloro-4-(2-nitro-3-chlorophenyl)-pyrrole], as well as the complex macrocyclic lactone, 2,3-de-epoxy-2,3-didehydro-thiazoxin. Pyrrolin is active against Rhizoctonia spp., Fusarium spp, and other plant pathogenic fungi, and it has been used as a lead structure in the development of a new phenylpyrrole agricultural fungicide (Ligon et al., 2000).

Strains of Pseudomonas fluorescens shows known biological control activity against certain soil-borne phytopathogenic fungi and has the potential to produce known secondary metabolites such as siderophore, HCN and protease that showed antagonistic activity against Macrophomina phaseolina, Rhizoctonia solani, Phytophthora nicotianae var. parasitica, Pythium sp. and Fusarium sp. (Ahmadzadeh et al., 2006). Pseudomonas fluorescens is being researched as a biological control organism.

Pseudomonas spp. are ubiquitous Gamma subclass of Proteobacteria that are inhabitants of a wide range of soil, water and plant surfaces. Many pseudomonas live in a commensals relationship with plants, utilizing nutrients tolavan as well as pupae of vector mosquitoes (Hamdan, 2005).
III. RESULTS AND DISCUSSION

Five strains of *Pseudomonas fluorescens* were screened for their antimicrobial activity against different fungi viz. *Alternaria cajani, Curvularia lunata, Fusarium sp., Bipolaris sp.* and *Helminthosporium sp.* in vitro. The *Pseudomonas* strains showed antifungal activity against all tested strains. Below table presents the different concentrations obtained for each strain tested.

![Fig. 1. Effect of Pseudomonas on Spore Germination of Alternaria Cajani](image1)

![Fig. 2. Effect of Pseudomonas on Spore Germination of Fusarium Sp](image2)

![Fig. 3. Effect of Pseudomonas on Spore Germination of Bipolaris Sp](image3)

![Fig. 4. Effect of Pseudomonas on Spore Germination of Helminthosporium Sp](image4)

All the five strains showed varied levels of antifungal activity and the highest concentration of *Pseudomonas* strains were capable of inhibiting the growth of the pathogenic microorganism. At 5000 μg/ml, all the *Pseudomonas* strains (Strain 1, 2, 3, 4 and 5) were highly resistant and showed highest inhibition percentage (81% to 100%) against fungus *Alternaria cajani* and *Curvularia lunata*. Out of the five strains studied, the best result was shown by Strain 1, which showed almost complete inhibition and maximum activity against *Curvularia lunata* and *Fusarium sp.* at 4000 and 5000 μg/ml while strain Strain 4 was resistant against *Fusarium sp.* and *Helminthosporium sp.* at 5000 μg/ml. The moderate activity was shown by the strains Strain 2 and Strain 3 against *Bipolaris Strain 1* and *Strain 3 against Helminthosporium*. The most sensitive strains were Strain 2 and Strain 5 against pathogenic fungi *Fusarium sp.* and *Helminthosporium sp.* while strain Strain 4 against *Bipolaris sp.* at 5000 μg/ml. These data revealed that *Pseudomonas* strains exhibited significant antifungal activity.

IV. CONCLUSION

The data obtained exhibit the antifungal activity of *Pseudomonas* strains and indicate the possibility of using *Pseudomonas fluorescens* as a biological control agent of some plant pathogenic fungi. However, this requires further screening of a large number of *Pseudomonas* strains from different regions of India. The antimicrobial activity of *Pseudomonas* may be attributed to the various phytochemical constituents have even more potency with respect to the inhibition of microbes.

REFERENCES


Anbuselvi.S, research scholar working as lecturer in the field of Industrial Biotechnology in Bharath University, Chennai. She has published few papers in International and National Conferences.