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Abstract

The complexity, openness, and increasing accessibility of the Internet have all greatly increased the risk of information system
security availability. A serious type of network attacks is Denial of Service (DoS), which is performed against an information
system to prevent legitimate users from accessing the compromised system for service. This paper concerns detecting DoS
attacks using Support Vector Machines (SVMs). The key idea is to train SVMs using already discovered patterns (signatures)
that represent DoS attacks. Using a benchmark data from a KDD competition designed by DARPA (U.S. Defense Advanced
Research Projects Agency), we demonstrate that highly efficient and accurate classifiers can be constructed by using SVMs to
detect DoS attacks. Further, we also perform feature ranking of the DARPA intrusion data to identify the key features that are

important to DoS detection.
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. INTRODUCTION

Information assurance is an issue of serious global
concern. The complexity and openness of client/server
technology combined with Internet have brought about
great benefits to the modern society; meanwhile, the
rapidly increasing connectivity and accessibility to the
Internet has posed a tremendous security threat.
Malicious usage, attacks, and sabotage have been on the
rise as more and more computers are put into use.
Connecting information systems to networks such as the
Internet and public telephone systems further magnifies
the potential for exposure through a variety of attack
channels. These attacks take advantage of the flaws or
omissions that exist within the various information
systems and software that run on many hosts in the
network.

Ware and Steven Levy pointed out the need for
computer security [1,2]. Since most of the intrusions can
be located by examining patterns of user activities and
audit records [3], many Intrusion Detection Systems
(IDSs) have been built by utilizing the recognized attack
and misuse patterns. IDSs are classified, based on their
functionality, as misuse detectors and anomaly detectors.
Misuse detection systems use the attack of well-know
patterns as the basis for detection [3,4,5,6,7]. Anomaly
detection systems use user profiles as the basis for
detection; any deviation from the normal user behavior is
termed as intrusions [3,4,5,8,9,10]. Several intrusion
detection systems are built with human intervention and
without human intervention. Rule based intrusion
detection systems; these systems are characterized by
their expert system properties that fire the rules when
audit records or system status begin to turn illegal
[3,4,11,12]. Statistical based intrusion detection systems;

these systems seek to identify the deviations from the
normal looking at the state and audit records
[8,13,14,15,16,17,18]. Various artificial intelligence
techniques are developed to automate the process by
reducing human intervention; several such techniques
include neural networks [16,17,18,19,20,21], autonomous
agents [22,23,24], and machine learning [20,25,26].
Several data mining techniques have been introduced to
identify key features or parameters that define intrusions
[25,26,27,28].

This paper concerns detecting DoS attacks and the
related issue of identifying important input features for DoS
attacks. We use support vector machines to build IDSs.
Since the ability to identify the important inputs and
redundant inputs of a classifier leads directly to reduced
size, faster training and possibly more accurate results, itis
critical to be able to identify the important features of
network traffic data for detecting misuse of the
computational resources in order for the IDS to achieve
maximal performance. Therefore, we also study feature
ranking and selection, which is itself a problem of great
interest in constructing models based on experimental
data.

In the rest of the paper, a brief introduction to the data
we used is given in section Il. In section Ill. a brief
introduction to DoS attacks is given. Experiments for
detecting DoS attacks are given in section IV. In section V.
a briefintroduction to SVMs and the experimental results
of using SVMs for DoS attacks is given. In section VI. we
present our feature ranking methodologies for identifying
key features for DoS detection. In section VII. we
summarize our results.
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II. DATA

In the 1998 DARPA intrusion detection evaluation
program, an environment was set up by the Lincoln labs to
acquire nine weeks of raw TCP dump data for a network by
simulating a typical U.S. Air Force LAN. The LAN was
operated simulating a real environment, but being blasted
with multiple attacks. A connection is sequence of TCP
packets with well defined connection time between a
source and a destination IP address under known
protocols [30,31]. All the connections are either labeled as
normal or an attack instance. Lee and Stolfo came up with
a data mining approach and identified 41 various
quantitative and qualitative features for each TCP/IP
connection [26]. Of this database a subset of 494021 data
were used, of which 20% represent normal patterns.

Attack types fall into four main categories
1. DoS: denial of service
2. R2L:unauthorized access from a remote machine

3. U2Su: unauthorized access to local super user (root)
privileges

4. Probing: surveillance and other probing
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Fig. 1. Data distribution
[1l. DENIAL OF SERVICE ATTACKS

Attacks designed to make a host or network incapable
of providing normal services are known as denial of
service attacks. There are different types of DoS attacks: a
few of them abuse the computers legitimate features; a
few target the implementations bugs; and a few exploit the
misconfigurations. DoS attacks are classified based on
the services that an adversary makes unavailable to
legitimate users. A few examples include preventing
legitimate network traffic, preventing access to services
foragroup orindividuals [32].

IV. EXPERIMENTS

We partition the data into the two classes of “Normal”
and “DoS” patterns, where the DoS attack is a collection of

six different attacks (back, neptune, ping of death, land,
smurf, and teardrop). The objective is to separate normal
and DoS patterns. We apply SVMs to the DARPA data set
as described in Section 2. In our experiments we use the
SVMs to classify patterns in several different ways. In the
first set of experiments

SVMs are used to classify normal patterns vs. DoS
patterns. In the second set of experiments we classify DoS
patterns vs. the rest of the patterns, which include other
types of attacks. Further we extended our experiments for
DoS instance-specific classifications.

Table 1. Overview of denial of service attacks
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We also apply two different feature ranking methods for
DoS attack patterns for the purpose of identifying the key
features that can help in recognizing DoS attacks with
better accuracy and/or faster detection.

V. SUPPORT VECTOR MACHINES

Support Vector Machines (SVMs) are learning
machines that plot the training vectors in high-dimensional
feature space, labeling each vector by its class. SVMs
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classify data by determining a set of support vectors, which
are members of the set of training inputs that outline a
hyper plane in the feature space [33,34,35]. SVMs provide
ageneric mechanismto fita hyper plane to performa linear
classification of the patterns through the use of a kernel
function. The user may provide a function (e.g., linear,
polynomial, or sigmoid) to the SVMs during the training
process, which selects support vectors. The number of
free parameters used in the SVMs depends on the margin
that separates the data points but not on the number of
input features, thus SVMs do not require a reduction in the
number of features in order to avoid over fitting--an
apparent advantage in applications such as intrusion
detection. Another primary advantage of SVMs is the low
expected probability of generalization errors.

A.Detecting DOS attacks using SVMs

To build SVMs for DoS detection, the input vectors are
extracted from raw TCP/IP dump in the DARPA data and
preprocessed; the output is a single value that indicates
whether the patternis a DoS attack.

DoS detection using SVMs consists of three phases:

D Preprocessing: an automated parser is used to
process the raw TCP/IP dump data into an appropriate
form.

D Training: SVM is trained on different types of attacks
and normal data. We have 41 features and two
classes, one is normal (-1) and the other is DoS attack
data (+1).

D Testing: the trained SVM is performance tested to
ensure that it has acquired adequate classification
capability.

Table 2. Performance of SVMS for DOS attacks
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VI. RANKING THE SIGNIFICANCE OF INPUTS

Feature selection is an important issue in intrusion
detection. Of the large number of features that can be
monitored for intrusion detection purpose, which are truly
useful, which are less significant, and which may be
useless? The question is relevant because the elimination
of useless features (or audit trail reduction) enhances the
accuracy of detection while speeding up the computation,
thus improving the overall performance of an IDS. In cases
where there are no useless features, by concentrating on
the most important ones we may well improve the time
performance of an IDS without affecting the accuracy of
detectionin statistically significant ways.

The feature ranking and selection problem for intrusion
detection is similar in nature to various engineering
problems that are characterized by:

D Having a large number of input variables x = (x1,
x2,_,_,_ xn) of varying degrees of importance; i.e.,
some elements of x are essential, some are less
important, some of them may not be mutually
independent, and some may be useless or noise

D Lacking an analytical model or mathematical formula
that precisely describes the input-output relationship,
Y=F(x).

D Having available a finite set of experimental data,
based on which a model (e.g. neural networks) can be
built for simulation, modeling, and prediction purposes

Due to the lack of an analytical model, we can only
seek to determine the relative importance of the input
variables through empirical methods. A complete analysis
would require examination of all possibilities, e.g., taking
two variables at a time to analyze their dependence or
correlation, then taking three at a time, etc. This, however,
is both infeasible (requiring 2n experiments!) and not
infallible (since the available data may be of poor quality in
sampling the whole input space). In the following,
therefore, we apply the technique of deleting one feature at
a time [36] to rank the input features and identify the most
important ones for detecting DoS attacks.

A. Performance-based method for ranking
importance

We first describe a general (i.e., independent of the
modeling tools being used), performance-based input
ranking methodology: One input feature is deleted from the
data at a time, the resultant data set is then used for the
training and testing of the classifier. Then the classifier's
performance is compared to that of the original classifier
(based on all features) in terms of relevant performance
criteria.  Finally, the importance of the feature is ranked
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according to a set of rules based on the performance
comparison.

The procedure is summarized as follows:

1. compose the training set and the testing set;
for each feature do the following

2. delete the feature from the (training and testing) data;
3. usetheresultantdata settotrain the classifier;

4. analyze the performance of the classifier using the
test set, in terms of the selected performance criteria;

5. rank the importance of the feature according to the
rules [ Refer to our papers];

According to the rules in [29], the 41 features are
ranked into the 3 types {Important}, <Secondary>, or
(Unimportant), for the DoS patterns, as follows:

Important:{1,3,5,6,8,19,23-28,32,33,35,36,38-
41}Secondary:<2,7,9,11,14,17,20,22,29,30,34,37>

Unimportant:(4,12,13,15,16,18,19,21,3)

Feature deletion results
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Fig. 2. DoS detection accuracy of SVMs with 40 features,
obtained by deleting one feature ata time.

Table 3. SVM detection efficacy for dos using
different features obtained from performance
based ranking

decision function. Using this information one can rank their
significance, i.e., in the equation

F (X) = WiXi + b

The point X belongs to the positive class if F(X) is a
positive value. The point X belongs to the negative class if
F(X) is negative. The value of F(X) depends on the
contribution of each value of X and Wi. The absolute value
of Wi measures the strength of the classification. If Wiis a
large positive value then the ith feature is a key factor for
positive class. If Wi is a large negative value then the ith
feature is a key factor for negative class. If Wi is a value
close to zero on either the positive or the negative side,
then the ith feature does not contribute significantly to the
classification. Based on this idea, a ranking can be done
by considering the support vector decision function.

The input ranking is done as follows: First the original
data set is used for the training of the classifier. Then the
classifier's decision function is used to rank the
importance of the features. The procedure is:

1. Calculate the weights from the support vector decision
function;

2. Rank the importance of the features by the absolute
values of the weights;

According to the ranking method, the 41 features are
placed into the 3 categories of {Important}, <Secondary>
or (Unimportant), as follows:

Important: {1,5,6,23,24,25,26,32,36,38,39}
Secondary: <2,3,4,10,12,29,33,34>

Unimportant: (7,8,9,11,13,22,27,28,30,31,35,36,37,
40,41)

Table 4. SVM detection efficacy for dos using
different features obtained from svdf ranking
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B. SVM-Specific feature ranking method

Information about the features and their contribution
towards classification is hidden in the support vector

methods give most consistent results in the selection of
“important” features. (Results are less consistent for the
other two classes of features). Afew important features, as
identified by both ranking methods, are given below:
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D Duration: Length of the connection made by the
destination system to the host system

D Source bytes: Number of bytes sent from the host
systemto the destination system

D Destination bytes: Number of bytes sent from the
destination system to the host system

D Count: Number of connections made to the same host
systeminagiveninterval of time

D Same service rate: Percentage of connections from
the destination system to the host system with the
same serviceinagiven interval of time

D Connections with SYN errors: Percentage of
connections with SYN errors in a given interval of time

D Connections-Same service-SYN errors: Percentage
of connections to the same service with SYN errorsina
giveninterval oftime

D Destination-Host Count: Number of connections made
by the same destination system to the same host
systeminagiveninterval of time

D Destination-Host-Same source- port rate: Percentage
of connections made by the destination system to the
same porton the host systemin a given interval of time

D Destination-Host-SYN error rate: Percentage of
connections from the destination system to the host
systemwith SYN errors in agiven interval of time

D Destination-Host-Same-Service error rate: Number of
connections made by the destination system using the
same service to the same host system in a given
interval of time

VIl. CONCLUSION

We have implemented SVMs for detecting DoS
patterns and validate their performance using the DARPA
intrusion evaluation data. We also apply heuristic
methods for ranking the features that are relevant to DoS
detection.

Inthe IDS application (and, specifically, DoS detection)
SVMs perform well and outperform other machine learning
techniques like neural networks in the important respects
of scalability, training time, running time and detection
accuracy [21,22,28]. In particular, the training time of
SVMs is frequently an order of magnitude shorter than that
of neural networks, while the detection accuracy is
markedly higher.

SVMs easily achieve very high detection accuracy
(greater than 99%) for each of the attack instances of data.
SVM feature ranking method revealed that using only the

important or using important plus secondary features
achieved only slightly lower accuracy, which suggests that
a sensitivity selector may be included in an IDS-i.e.,
depending on the security requirements, different sets of
features may be used in the DoS detection engine.
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