
Abstract

In this paper we present the partial reconfiguration of floating point arithmetic unit that improves the area occupied by floating
point arithmetic unit and also makes this unit flexible to operate in a rapidly changing environment. The hardware resources
occupied by this unit have been reduced through time-sharing them between modules. Since the FP-AU occupies a significant
amount of silicon area in any application due to wide dynamic range, our proposed design shows a very efficient area reduction
technique for FP-AU. Partial reconfiguration is the ability of certain Field Programmable GateArrays (FPGAs) to reconfigure only
selected portions of their programmable hardware while other portions continue to operate undisturbed. A FPGA can be partially
reconfigured using a partial bitstream. We can use such a partial bitstream to change the structure of one part of an FPGAdesign
as the rest of the device continues to operate and this reduces the reconfiguration time. The floating point arithmetic unit is
modeled in VHDL and synthesized with Xilinx ISE tools. The floating point arithmetic modules are designed for Virtex-2 Pro
XC2VP50 FPGA.

Key words: Floating PointArithmetic Unit (FP-AU), FPGA, Reconfiguration, Partial Reconfiguration.

DESIGN AND IMPLEMENTATION OF PARTIALLY RECONFIGURABLE FP-AU
1 2 3

P.S.Surekha , R.C.Joshi , A.K.Saxena
1,2,3

Department of Electronics and Computer Engineering
Indian Institute of Technology Roorkee, India.

1
E-mail: kumarfec@iitr.ernet.in

I. INTRODUCTION

In recent years computer applications have increased
in their computational complexity. The industry wide usage
of performance benchmarks such as SPECmarks forces
processor designers to pay particular attention to
implementation of the floating point unit or FPU. Special
purpose applications such as digital signal processing,
audio processing and many real time applications placed
further demands on processors with floating point unit.
Unfortunately, the sheer size of these floating-point units
makes it difficult to house a large number of units in a single
FPGA. So, there is a need for a technique which reduces
the resources requirement of FP-AU so that it can be
implemented with fewer and/or smaller number of
resources. This paper presents the design of partially
reconfigurable floating point arithmetic modules which uses
less hardware resources.

These partially reconfigurable modules are
implemented on FPGA. There FPGAs can be configured to
implement complex hardware flexible systems. FPGA
reconfiguration [1] typically requires the whole chip to be
reprogrammed even for the slightest circuit change and
also some systems reconfiguration time adds delay to the
application. Dynamic reconfiguration modifies the
functionality of the system when it is under operation thus
reducing each FPGA configuration to only required circuit
elements, a greater amount of circuitry is available for the
implementation of parallel structures which can lead to an
increased optimal performance. By using partial dynamic
reconfiguration, reconfiguration time and hardware
resources occupied by floating point arithmetic unit can be
reduced through time sharing the hardware resources
between modules.

36

IEEE 754 floating point standard has been chosen for
doing partial reconfiguration because of its wide range of
real time applications. The IEEE floating point standard
makes floating point unit implementation [2] portable and
the precision of the results predictable. A variety of different
circuit structures can be applied to the same number
representations, offering flexibility. The floating point unit
algorithm, architecture, and bit-width adaptation offer
significant potential for optimization. In this work Virtex-2pro
(XC2VP50) FPGAdevice has been used to design partially
reconfigurable floating point arithmetic modules.

This paper presents the partial reconfiguration of
floating point modules and is organized in six sections.
Section I introduces about the FPGAand its reconfiguration
Section II briefly discusses about floating point number
system, Section III briefly discusses the Xilinx Virtex II Pro
FPGA architecture, section IV discusses analysis of
dynamic reconfigurable systems using floating point
modules section V gives brief description of implemented
FP-AUs using partial reconfiguration, and Section VI gives
results and conclusions.

II. FLOATING POINT NUMBER SYSTEM

The FP-AU that we designed handles the operations
of IEEE-754 standard single precision format. In this work
we have used single precision IEEE 754 floating point
format for representing floating point numbers. The bit
representation of a single precision floating point format [3]
is as follows

1-bit 8-bits 23-bits

Sign-Bit Exponent = Base
exponent + bias

mantissa

International Journal on Intelligent Electronic Systems, Vol.3, No.1, January 2009

This arithmetic operation includes alignment,
rounding, normalization of floating point numbers.
Alignment includes comparison and shifting operations.
The exponents of operands are compared and the
significand with smaller exponent is shifted right in order to
align two exponents. Rounding is made in order to restrict
the resultant significant to 23 bits. If the result exceeds its
limits then it is indicated by using overflow bit. Normalization
of mantissa of the result is done by shifting it to the left until
the high order bit is a one. Adjusting exponent of the result ,
is done by subtracting it by the number of positions that
mantissa was shifted left.

Fig. 1. FP-AU Design Flow

Following are the design steps to perform arithmetic
operations on floating point numbers and those are as
shown in Fig .1

Addition/Subtraction:

1. Exponent difference

2. Pre-shift for mantissa alignment

3. Mantissa addition/subtraction

4. Post-shift for result normalization

5. Rounding

Multiplication & Division:

1. Mantissa multiplication or division

2. Shifting the result for normalization.

3. Rounding the result

The complete description of the functionality of these
modules can be referred from [4,5]. Once the high-level
description (VHDL [6]) of these modules is completed, the
code goes through simulation for verifying the functionality
and synthesis for generating the net-list and optimizes in
area, performance or both fits it into the target device.

III. XILINX VIRTEX II PRO FPGA

The basic architecture of any FPGA device consists of
an array of logic blocks surrounded by programmable I/O
blocks, and connected with a programmable interconnects.
The general architecture of Xilinx Virtex-II Pro is shown in
Fig. 2. The basic cell of any Virtex FPGA is configurable
logic block (CLB). Each CLB contains 4 slices and each
slice contains 2 Look Up Tables (LUTs) and 2 D flip-flops. A
LUT is used to store in memory the result to every possible
input and does not require actual computation, only fetching
of the data. In an FPGA, the LUT stores the outcome of any
logic operation on 4 inputs (some vendors are migrating to a
6-input LUT, but the concept is the same.) In logic, 4 bits can
represent 16 values; any logic operation on these 4 bits will
result in one of these values. The D-flip flop inputs can be
driven by the LUTs with in a slice or directly from slice inputs,
bypassing the LUTs.The Virtex FPGA uses Block select
RAM memory blocks that are organized into columns. It
contains programmable input/output blocks (IOBs)
interconnected to the CLBs by fast, versatile routing
resources. The availability of these routing resources
permits the Virtex family to accommodate large, complex
designs. The complete Xilinx Virtex-II pro resources list and
its functionality can be found from [7].

Fig. 2. Xilinx Virtex-II Pro Device Architecture

Normalization

Rounding

Exponent

Difference

Allignment

Addition/

Subtraction

Multiplication/

Division

Normalization

Rounding

FP-AU

+ (or) -

* (or) /

Floating value in IEEE-754 32-bit binary format

data2data1

exponentSignificantSign

37Surekha et al : Desing and Implementation of Partially Reconfigurable FP-AU

Adder

Subtractor

Multiplier

1

2

3

Control_unit

Devider4

Base

region

Partial

Reconfiguration

Region

Adder

Subtractor

Multiplier

Swap in

Swap out

Devider

a

b

Fig. 3. (a, b): Run-time and Partial reconfigurations of
floating point modules

IV. DYNAMIC RECONFIGURABLE SYSTEM ANALYSIS

One way to further exploit the reconfigurable
resources of FPGAs and increase functional density is to
reconfigure them during system operation. This process is
referred to as Run-Time Reconfiguration (RTR). RTR is an
approach to system implementation that divides an
application or algorithm into time-exclusive operations that
are implemented as separate configurations. One type of
RTR is Partial Reconfiguration. Partial reconfiguration [8] is
useful for systems with multiple functions that can time-
share the same FPGA device resources. In such systems,
one section of the FPGA continues to operate, while other
sections of the FPGA are disabled and partially
reconfigured to provide new functionality. This is analogous
to the situation where a microprocessor manages context
switching between software processes. Except in the case
of partial reconfiguration of an FPGA, it is the hardware not
the software that is being switched. Partial reconfiguration
provides an advantage over multiple full bitstreams in
applications that require continuous operation not
otherwise accessible during full reconfiguration. By using
partial reconfiguration, designers can dramatically increase
the functionality of a single FPGA, allowing a system to be
implemented with fewer and smaller devices than is
otherwise required. The analysis of run-t ime
reconfiguration and partial run-time reconfigurations
applied to floating point modules is as shown in Fig.3.

In run-time reconfiguration individual designed
modules are downloaded on needed basis by swap out the
existing modules configuration data and swap in with

needed module configuration data. It means in some
applications it is necessary to run one particular module by
stoping the functionality of already running module. In our
application we have designed floating point modules which
are partially reconfigurable. In partial reconfiguration the
base module always runs and partially reconfigurable
modules are interchanged depending on requirement. So in
our design PCI-interface will always run and partial
reconfigurable modules adder/subtractor, multiplier and
divider are loaded on to the FPGA depending on
requirement. The PCI-interface logic works as a control unit
for these modules. The hardware modules and assigned
area constraints are shown in Table-I.

V. PARTIAL RECONFIGURATION METHODOLOGY

There are two ways of partial reconfiguration one is
module based and another is difference based partial
reconfiguration. Further details refer [9]. Floating point
modules are partially reconfigured using Command Line. In
this we have used module based partial reconfiguration
approach i.e., if we need to change functionality of a PR
module then we have to replace the entire running module
bitstream with another module bitstream. In our approach
we have divided entire design into three parts Top level
Design, Base design and partially reconfigurable modules.
Top level design includes all modules, bus macros and
global signals black box instantiations. Base design
includes static logic that is PCI interface logic to give inputs
to reconfigurable modules from files and to receive output
from reconfigurable modules and write them on files. Partial
reconfigurable modules adder/subtractor, multiplier and
divider are swapped in or swapped out depending on
application into the partial reconfigurable region without
stopping the functionality of base region i.e. PCI interface.
We have implemented all these modules separately and
then finally combined them using merging process. It is
important to note that we have to mention area group
ranges with area constraints [10] and modes with
reconfigurable regions are assigned with proper values in
the UCF file.

VI. RESULTS & CONCLUSIONS

The floating point arithmetic modules are designed in
VHDL and pre-synthesis simulation has been done with
simulation tool ModelSim 6.0d. After confirming the
functional verification, hardware resources estimation has
been carried out with XILINX 9.2i (ISE) and modules has
been designed for command line partial reconfiguration for
XUP development kit based on Virtex-II Pro (XC2VP-50)
FPGA. The post-synthesis simulation also carried out to
ensure correct operation. The resource utilization summary
generated from synthesis tool has been given in Table-2.
The results we obtained after implementing the floating

38 International Journal on Intelligent Electronic Systems, Vol.3, No.1, January 2009

point modules on the Virtex II-Pro Device are given in Table-
III. Input is given in hex format through files and output is
extracted into file in hex format.

Table-I Hardware Modules

The presimulation results for partially reconfigurable
modules are also given in Fig. 4, Fig. 5 and Fig. 6
respectively. From Table-II we can say that for
implementing FP-AU on FPGA instead of using
approximately 2500 slices we can get the same
performance with approximately 1600 slices added with
this is the reduced reconfiguration time. From this we
concluded that by optimizing the designed modules in area
and performance through automated tools and through
runtime reconfiguration and partial reconfiguration
methods to reuse hardware and by evaluating partial
reconfiguration [11] techniques one can achieve high level
of flexibility in hardware without compromising in high
performance.

Fig. 4. Addition and Subtraction

Fig. 5. Multiplication

Fig. 6. Division

Table-II Hardware Modules

Table-III: Resource utilization Summary

REFERENCES

[1] Katherine Compton, Scott Hauck, “Reconfigurable
computing: a survey of systems and software,” ACM
computing Surveys, vol. 34,pp. 171 - 210, June 2002.

[2] Gerardo Leyva, Gabriel Caffarena, Carlos Carreras,
Octavio Nieto-Taladriz Dpto, “A Generator of High-
speed Floating-point Modules,” IEEE Symposium on
Field-Programmable Custom Computing Machines
pp.306-307,2004.

[3] Jian Liang; Tessier, R.; Mencer, O, “Floating point unit
generation and evaluation for FPGAs ,” in
Proceedings of 11th Annual IEEE Symposium on
Field-Programmable Custom Computing Machines,9-
11April 2003, pp:185 – 194.

[4] Jean-Pierre, Deschamps, Gery, Jean Antoine Bioul,
Gustavo D.Sutter, “Synthesis of arithmetic circuits
FPGA ASIC and Embedded Systems,” John Wiley
and Sons publishers 2006.

[5] S. F. Anderson, J. G. Earle, R. E. Goldschmidt, D. M.
Powers, “The IBM System/360 Model 91: Floating-
point Execution Unit,” IBM tech International Journals
[online] http://domino.research.ibm.com/tchjr/.

Name of the

module

Input1 Input2 Output

Addition-

Subtraction

12121231

98571234

091a0470

31310016

02091a04

abcdef10

3158800b

986b8919

abe6f787

Multiplication

12121231

98571234

091a0470

31310016

02091a04

abcdef10

03c9fd40

ffe65d32

fff7cac2

Division

12121231

98571234

091a0470

31310016

02091a04

abcdef10

6c534426

e980000

e8bf7630

Module Function Area Constraint

Adder-Subtractor Performs 32-bit addition/subtraction Reconfigurable

Multiplier Performs 32-bit Multiplication Reconfigurable

Divider Performs 32-bit division operation Reconfigurable

Base Contains Base design

in this we have included PCI interface

logic

Static

Name of the

module

No. of slices

(23616)

No. of LUTS

(47232)

No. of bonded IOBs

(692)

No. of

GCLKs

No. of Partitioned

Slices

Addition-

Subtraction

98 172 50 1

Multiplication 975 610 50 1

Division 1119 1815 52 1

PCI-interface 237 133 34 1

1300

300

39Surekha et al : Desing and Implementation of Partially Reconfigurable FP-AU

[6] Volnei A.Pedroni, “Circuit Design with VHDL," MIT
Press, 2004.

[7] Xil inx Virtex II Pro Complete data sheet
http://www.xilinx.com/support/documentation/
data_sheets/ds083.pdf

[8] Xilinx website [online] http://www.xilinx.com/
publications/xcellonline/xcell_55/xc_prmethod55.htm.

[9] Two Flows for Partial Reconfiguration: Module Based
or Difference Based, XAPP290 (v1.2), Xilinx Inc., Sept
9,2004.

[10] Xilinx Early Access Partial Reconfiguration User
Guide [online] http://www.xilinx.com/support
/documentation/user-guides/ug208.pdf.

[11] Ross Hymel, Alan D.George and Herman Lam,
“Evaluating Partial Reconfiguration for Embedded
F P G A A p p l i c a t i o n s , ” N S F C e n t e r f o r
High-Performance Reconfigurable Computing,
University of Florida, 27 July 2007.

Dr. Ramesh C. Joshi received the
B . E . d e g r e e i n e l e c t r i c a l
engineer ing from Al lahabad
University in 1967, M.E. and Ph.D.
degrees in Electronics and
Computer Engineer ing from
University of Roorkee (Now, IIT
Roorkee) in 1970 and 1980,
respectively. He is currently working

as professor in Department of Electronics and
Computer Engineering at Indian Institute of
Technology Roorkee, India. He has received a Gold
Medal by Institute of Engineers in 1978 for best
research paper. He has published about 150 research
papers in National/International International
Journal/Conferences and delivered about 20 special
lectures in various US and Indian Universities and
Organizations. His main research interests are in
Parallel & Distributed Processing, Databases and
VLSI Design.

40 International Journal on Intelligent Electronic Systems, Vol.3, No.1, January 2009

