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Seemingly random, chaotic dynamic systems have state variables that move about in a non-periodic, bounded fashion. The
sensitivity to initial conditions of chaotic signals also holds an interesting pattern. A seemingly tiny change in the values of initial
conditions, can greatly affect the values of the output. This means that cross-correlation of two chaotic signals from the same
source can be very low. By nature, chaotic systems are required to be non-linear and dynamic systems.The behaviour of dynamic
systems was modeled using MATLAB,with pertinent non-linearities.Various mathematical aspects were studied.Since
differential equations are an integral part of modeling dynamic systems, finding solutions to differential equations using MATLAB
programming was also done.

Chaos, attractors, bifurcation diagram and non-linear dynamic systems.

I. INTRODUCTION

Chaos theory describes the behavior of certain
nonlinear dynamical systems that may exhibit dynamics
that are highly sensitive to initial conditions. As a result of
this sensitivity, which manifests itself as an exponential
growth of perturbations in the initial conditions, the
behavior of chaotic systems appears to be random. This
happens even though these systems are deterministic,
meaning that their future dynamics are fully defined by
their initial conditions, with no random elements involved.
This behavior is known as deterministic chaos, or simply
chaos.

Chaotic behavior has been observed in the laboratory
in a variety of systems including electrical circuits, lasers,
oscillating chemical reactions, fluid dynamics, and
mechanical and magneto-mechanical devices.
Observations of chaotic behavior in nature include the
dynamics of satellites in the solar system, the time
evolution of the magnetic field of celestial bodies,
population growth in ecology, the dynamics of the action
potentials in neurons, and molecular vibrations. Everyday
examples of chaotic systems include weather and climate.

Systems that exhibit mathematical chaos are
deterministic and thus orderly in some sense; this
technical use of the word chaos is at odds with common
parlance, which suggests complete disorder. A related
field of physics called quantum chaos theory studies
systems that follow the laws of quantum mechanics.
Recently, another field, called relativistic chaos, has
emerged to describe systems that follow the laws of
general relativity.

II. CHAOTIC  DYNAMICS

For a dynamical system to be classified as chaotic, it
must have the following properties:

�It must be sensitive to initial conditions,

�It must be topologically mixing, and

�Its periodic orbits must be dense.

Sensitivity to initial conditions means that each point in
such a system is arbitrarily closely approximated by other
points with significantly different future trajectories. Thus,
an arbitrarily small perturbation of the current trajectory
may lead to significantly different future behavior.

Sensitivity to initial conditions is popularly known as
the "butterfly effect", so called because of the title of a
paper given by Edward Lorenz in 1972 in the American
Association for the Advancement of Science in
Washington, D.C. entitled “Predictability: Does the Flap of
a Butterfly's Wings in Brazil set off a Tornado in Texas?”.
The flapping wing represents a small change in the initial 
condition of the system, which causes a chain of events
leading to large-scale phenomena. Had the butterfly not
flapped its wings, the trajectory of the system might have 
been vastly different.

Topologically mixing means that, the system will
evolve over time so that any given region or open set of its
phase space will eventually overlap with any other given
region. Here, "mixing" is really meant to correspond to the
standard intuition: the mixing of colored dyes or fluids is an
example of a chaotic system.

III. ATTRACTORS

Some dynamical systems are chaotic everywhere but
in many cases chaotic behaviour is found only in a subset
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of phase space. The cases of most interest arise when the
chaotic behaviour takes place on an attractor, since then a
large set of initial conditions will lead to orbits that
converge to this chaotic region. While most of the motion 
types mentioned above give rise to very simple attractors,
such as points and circle-like curves called limit cycles,
chaotic motion gives rise to what are known as strange
attractors, attractors that can have great detail and
complexity. The Lorenz attractor is a 3-dimensional
structure corresponding to the long-term behavior of a
chaotic flow.

The map shows how the state of a dynamical system
(the three variables of a three-dimensional system)
evolves over time in a complex, non-repeating pattern.

Fig. 1. Lorenz Attractor

IV. PHASE  PORTRAIT

A phase portrait is a geometric representation of the
trajectories of a dynamical system in the phase plane.
Each set of initial conditions is represented by a different
curve, or point. Phase portraits are an invaluable tool in
studying dynamical systems. They consist of a plot of
typical trajectories in the state space. This reveals
information such as whether an attractor, a repellor or limit
cycle is present for the chosen parameter value. The
concept of topological equivalence is important in
classifying the behavior of systems by specifying when two
different phase portraits represent the same qualitative
dynamic behavior.

Phase portraits are obtained by plotting one of the
output states of the system against another with both
states evolving in terms. In phase portrait a single loop
indicates a single period. Multiple routes intersecting with
each other indicate that many periods are present.

V. BIFURCATION DIAGRAM

Bifurcation theory is the mathematical study of how
and when the solution to a problem changes from there

only being one possible solution, to there being more than
one, which is called a bifurcation.Most commonly used in 
the mathematical study of dynamical systems, a
bifurcation occurs when a small smooth change made to
the parameter values (the bifurcation parameters) of a
system causes a sudden 'qualitative' or topological
change in its long-term dynamical behavior.

An example is the bifurcation diagram of the logistic
map:

Fig. 2. Bifurcation Plot 

The bifurcation parameter r is shown on the horizontal
axis of the plot and the vertical axis shows the possible
long-term population values of the logistic function. Only
the stable solutions are shown here, there are many other
unstable solutions which are not shown in this diagram.
The bifurcation diagram nicely shows the forking of the
possible periods of stable orbits.

A feature seen in these diagrams is that chaotic
regions are interspersed with periodic windows.
Bifurcation diagrams also exhibit scaling i.e. if we zoom
one region it resembles the whole. These bifurcation
diagrams help to identify regions of chaos and periodic
behavior that help in proper design of chaotic systems.

VI. APPLICATIONS

Chaos theory is applied in many scientific disciplines:
mathematics, biology, computer science, economics,
engineering, finance, philosophy, physics, politics,
population dynamics, psychology, and robotics. Chaos
theory is also currently being applied to medical studies of
epilepsy, specifically to the prediction of seemingly
random seizures by observing initial conditions.

Recently Chaos theory has been applied to Radio over
Fiber Technology in Optical Communication.
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VII. CHAOTIC SIGNALS AND SYSTEMS

A. Introduction

Many non-linear dynamical systems do not follow
simple, regular, and predictable trajectories. These
systems evolve in a random-like, but well-defined, fashion.
As long as the process involved is nonlinear, even a simple
deterministic model may develop such complex behavior-
chaos. Many disciplines have recognized the benefits of
chaotic systems and try to exploit their particular
properties. Today, the challenge from “how to avoid” the
chaotic behavior has been changed to “how to control” or
“how to exploit” it.

VIII. CHAOTIC SIGNAL

It can be difficult to tell from data whether a physical or
other observed process is random or chaotic, because in 
practice no time series consists of pure 'signal.' There will
always be some form of corrupting noise, even if it is
present as round-off or truncation error. Thus any real time
series, even if mostly deterministic, will contain some
randomness.

All methods for distinguishing deterministic and
stochastic processes rely on the fact that a deterministic
system always evolves in the same way from a given
starting point. Thus, given a time series to test for
determinism, one can:

1. pick a test state;

2. search the time series for a similar or 'nearby' state;
and

3. Compare their respective time evolutions.

Define the error as the difference between the time
evolution of the 'test' state and the time evolution of the
nearby state. A deterministic system will have an error that
either remains small (stable, regular solution) or increases
exponentially with time (chaos). A stochastic system will
have a randomly distributed error.

Essentially all measures of determinism taken from
time series rely upon finding the closest states to a given
'test' state (i.e., correlation dimension, Lyapunov
exponents, etc.). To define the state of a system one
typically relies on phase space embedding methods.
Typically one chooses an embedding dimension, and
investigates the propagation of the error between two
nearby states. If the error looks random, one increases the
dimension. If you can increase the dimension to obtain a
deterministic looking error, then you are done. Though it
may sound simple it is not really. One complication is that
as the dimension increases the search for a nearby state 
requires a lot more computation time and a lot of data (the

amount of data required increases exponentially with
embedding dimension) to find a suitably close candidate. If
the embedding dimension (number of measures per state)
is chosen too small (less than the 'true' value) deterministic
data can appear to be random but in theory there is no
problem choosing the dimension too large – the method
will work. Practically, anything approaching about 10
dimensions is considered so large that a stochastic
description is probably more suitable and convenient
anyway.

IX. HAOTIC SYSTEMS

A. Autonomous Dynamical Systems

Dynamical systems can be classified as autonomous
and non-autonomous dynamical systems. The governing
equations of a non-autonomous dynamical system
depend on time, while the governing system equation of an
autonomous dynamical system is independent of the time.
The non-autonomous dynamical systems will not be
considered here, because:

�Any non-autonomous system can be transformed to
an equivalent higher order autonomous system, and

�The chaotic systems used in chaotic communications 
schemes are autonomous dynamical systems.

B. Chaotic Steady - State

At least a third order continuous time nonlinear system
or a first-order discrete time nonlinear system with non-
invertible map is required to get a chaotic behavior. Chaos
is bounded steady-state behavior that is not an equilibrium
point, not periodic, and not quasi-periodic. In the time
domain the chaotic signals are random-like but well
defined signals which can be predicted only in the short-
term. In the frequency domain, due to the non-periodicity
characterizing the evolution in the time domain, chaotic
signals has broad-band “noise-like” spectrum.

Fig. 1.3. Waveform of chaotic signal from the first order
discrete time nonlinear system with same initial conditions
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X. NON LINEAR SYSTEM

Necessary conditions for Chaos:

�Non-linearity

�Dynamic behavior

�Governing state equations or differential equations

Approaches that can be used for non-linearity:

�Power series model

�Saleh model

�Differential Equation model

�Soft/hard limiter model

Fig. 4.  Power Series Model

Consider a system defined by the following

3 3 2 2 (-t/2)
d y/dt + 7d y/dt + 3|y(t)|dy/dt + 9y(t)= 4 e for t<20

3 3 2 2 (-t/2)
d y/dt + 7d y/dt + 3 y(t)dy/dt +9y(t)= 4 e for t>=20

The resulting attractor for the above system is plotted in
Figure 5.

Fig. 5. System Attractor

XI. CONCLUSION

To get chaotic behavior, at least a third-order nonlinear
dynamical system has to be considered in the continuous-
time domain, or a first order discrete-time system with non-
invertible map has to be used.

Chaotic signals are aperiodic and their spectrum is
continuous and usually broadband. Since their statistical
properties may be designed and controlled, chaos find
application in (broadband) communication.
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