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Abstract – 

Image De-noising is a problem of prime importance in the field of Image Processing ranging from Medical Imaging to Satellite 
imaging. The main purpose of an Image de-noising algorithm is to reduce the noise level to improve both the interpretability 
and visual aspect of the images. This paper propose to indicate the suitability of different Multi-resolution transforms, viz 
Wavelets, Ridgelets and Curvelets in de-noising various imaging modalities corrupted by Random noise, Gaussian noise, 
Speckle Noise, Salt and Pepper Noise and Poisson noise. Though the comparative study is based on various imaging 
modalities, due relevance is given to medical images like Computed Tomography (CT), Magnetic resonance Imaging (MRI) 
and X-ray images. Experiments are conducted on various image data sets namely Natural, Satellite and Medical Images with 
the Multi-resolution transforms using two existing thresholding strategies, namely Soft and Hard Thresholding. A 
comprehensive evaluation of three different types of Multiresolution transforms corrupted with different types of noise is 
provided and the quality of de-noising is measured in terms of Peak Signal to Noise ratio (PSNR). Experimental results 
indicate that the Curvelets reveal superior performance over wavelets and Ridgelets in terms of PSNR value and perceptible 
quality. 
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I. INTRODUCTION 

Efficient representation of images is critical for image 

processing in computer vision, pattern recognition and 

image compression. Often an image is corrupted by noise 

during acquisition as well as transmission, for instance in 

astronomical image, medical images and remote sensing 

image etc. Dealing with noisy data turns out to be one of 

the toughest challenges in image processing. Noise 

naturally arises in difficult conditions such as poorly 

illuminated environments, short exposure times and low 

efficiency photon detectors. In this context de-noising can 

help recover the underlying signal. In bio-medical 

applications, quality requirements are high and optimal 

de-noising increases both the readability and 

interpretability of the images (1). A typical example 

occurs in radiation oncology, where Positron Emission 

Tomography (PET) is used to diagnose tumors. Noise 

and resolution limit the accuracy of tumor delineation, 

which can reduce the treatment benefit. A common pre-

processing step is de-noising, which is usually done via 

Gaussian smoothing. Smoothing suppresses noise, but it 

also changes the intensity variations of the underlying 

image. This suppresses or even removes the detailed 

features of the original image. The image corrupted by 

noise is not easily eliminated in image processing. 

According to actual image characteristics, noise statistical 

property and frequency  

Spectrum distribution, noise elimination methods are 

divided into space and transformation fields. The space 

field is a data operation carried on the original image and 

processes the image grey value like Wiener filter etc. In 

the transformation field, the co-efficient after 

transformation are processed. 

In the last decade, image denoising techniques have 

been increased especially for medical applications 

wherein the qualified radiologists navigate, view, analyze 

and interpret medical images. The analysis and 

visualization of the image stack received from the 

acquisition devices are difficult to evaluate due to the 

quantity of clinical data and the amount of noise existing 

in the medical images due to the scanners 

itself.Computed Tomography is one of the most important 

modalities in medical imaging and the radiation exposure 

associated with it is its drawback (2),(3). With respect to 
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patients care, the least possible radiation dose is 

demanded. The ratio between relevant tissue contrasts 

and amplitude of noise must be sufficiently large for a 

reliable diagnosis. Single Photon Emission Computed 

tomography  (SPECT) imaging is considered to be highly 

useful in oncology, but low Signal to Noise ratio 

(SNR)caused by photon noise introduces considerable 

compromise in image quality and reduction of diagnostic 

accuracy (4).Noise in medical X-ray images is primarily 

categorized into quantum mottle, which is related to the 

number of incident X-rays, and due to the artificial noise 

which is introduced due to the grid. The effect of quantum 

mottle is manifested as an increase in the graininess of 

an X-ray image as the dose is reduced. Therefore noise 

reduction is of great significance in medical X-ray images 

(5). 

Hence sparse representation of image data, where 

most of the information is packed into small number of 

data, is very important in many image processing 

applications. In Image processing Fourier transform is 

usually used. However Fourier transform can only provide 

an efficient representation for smooth images but not for 

images that contain edges. Edges or boundaries of 

objects cause discontinuities or singularities in image 

intensity. 

Wavelets are suitable for dealing with objects with 

point singularities. By decomposing the image into a 

series of high pass, low pass filter bands, the wavelet 

transform extracts directional details that capture 

horizontal, vertical and diagonal activity. Wavelets 

provide a very sparse and efficient representation for 

smooth signal, but it cannot efficiently represent 

discontinuities along edges or curves in images or objects 

(6). 

Ridgelet improves de-noising; however they capture 

structural information of an image based on multiple 

radial directions in the frequency domain. Line 

singularities in Ridgelet transform provides better edge 

detection than wavelet. Ridgelet transform provides 

information about orientation of linear edges in images 

since it is based on Radon transform which is capable of 

extracting lines of arbitrary orientation. Ridgelet is most 

effective in detecting linear radial structures, hence not 

suitable for de-noising medical images.  

Hence Donoho and others proposed the first 

generation Curvelet transform based on multiscale 

Ridgelet transform (7),(8). Later they proposed the 

second generation Curvelet transform. Two digital 

implementations of the Curvelet transform i.e. the 

Unequally Spaced Fast Fourier Transform (USFFT)[9] 

and the Wrapping Algorithm(10) are used to de-noise 

images degraded by different types of noise. Curvelet is 

proven to be particularly effective along curves which are 

the most comprising objects of medical images.  

Although exhaustive comparative study on the 

performance of three different Multi -resolution transforms 

in de-noising various imaging modalities is projected in 

this paper much significance is given to Bio-medical 

images like CT, MRI and X-ray images since de-noising 

aids the physicians in a more accurate diagnosis of 

disease. A very important requirement for any noise 

reduction in medical images is that all clinically relevant 

images content must be preserved. Especially edges and 

small structures should not be affected. The goal of all 

these methods is to lower the noise power without 

smoothing curve edges.  

Threshold shrinking algorithms are widely used in 

image de-noising. Structures are represented in a small 

number of dominant co-efficient while white noise is 

spread across a range of small co-efficient. This 

observation dates back to the work of Donoho and 

Johnston (11). The larger co-efficient are viewed as 

actual image signal while the smaller co-efficient are 

viewed as noise signal. So a proper threshold is set and if 

the co-efficient are smaller than the threshold it is set to 

zero, otherwise it will be kept unchanged(hard threshold) 

or shrunk in the absolute value by an amount of 

threshold(soft threshold). The thresholds are determined 

to a large extent by noise standard variance. 

This paper is focused on robust implementation of 

Multi resolution analysis (MRA) techniques such as 

Wavelets, Ridgelet and Curvelets for denoising natural 

images, satellite images and medical images such as 

CT, MRI and X-ray images corrupted with different types 

of noise (5). 

The rest of the paper is organized as follows. In 

Section 2, the analysis of Multi-resolution transforms are 

illustrated. The Image denoising algorithm is discussed in 

Section 3 and the Evaluation criteria is described in 
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Section 4. The experimental results and the Observations 

are discussed in Section 5. Finally the conclusions are 

drawn in Section 6. The future work in removing Poisson 

noise in medical images is highlighted in section 7. 

II. METHODOLOGY-MULTIRESOLUTION 

ANALYSIS 

Image De-noising using MRA such as wavelets has 

been widely used in recent years and provides better 

accuracy in de-noising different types of images. Many 

recent developments in MRA suggest Ridgelet and 

Curvelets since wavelets are suitable for dealing with 

objects with point singularities. Wavelets can only capture 

limited directional information due to its poor orientation 

selectivity. However the horizontal, vertical and diagonal 

activity extracted by the wavelet transform might not 

capture enough directional information in noisy images 

such as medical CT scans. 

Hence Jean Luc Starck et al have proposed the 

radon, Ridgelet and curvelet transforms for image de-

noising (12),(13). Ridgelets capture structural information 

of an image based on multiple radial directions in the 

frequency domain. Donoho and others proposed Curvelet 

transform and their anisotropic character which is 

particularly effective at detecting image activity along 

curves instead of radial directions which are the most 

comprising objects of medical images. 

In this study comparative analysis of three different 

Multiresolution transforms (i.e.) Wavelets, Ridgelet and 

Curvelets using Soft and Hard thresholding have been 

proposed (14),(15). Second generation Curvelets (i.e.) 

the Fast Discrete Curvelet Transform based on wrapping 

algorithm is implemented as it is conceptually simpler, 

faster and less redundant. 

I. Wavelet Transform 

Wavelets are mathematical functions that analyze 

data according to scale or resolution. They aid in studying 

a signal in different windows or at different resolutions. 

For instance, if the signal is viewed in a large window, 

gross features can be noticed, but if viewed in a small 

window, only small features can be noticed.  Wavelets do 

a good job than Fourier transform, in approximating 

signals with sharp spikes having discontinuities. The term 

“wavelets” is used to refer to a set of orthonormal basis 

functions generated by dilation and translation of scaling 

function φ and a mother wavelet ψ. The finite scale multi 

resolution representation of a discrete function can be 

called as a Discrete Wavelet Transform (DWT). DWT is a 

fast linear operation on a data vector, whose length is an 

integer power of two. This transform is invertible and 

orthogonal, where the inverse transform expressed as a 

matrix is the transpose of the transform matrix.  

The orthonormal basis or wavelet function 

is defined as 

                             [1] 

In equation [1]  is the normalizing constant. The 

scaling function can be determined by equation [2] as 

follows 

The factor „j‟ in equations [1] and [2] is known as the 

scale index, which indicates the wavelet‟s width. The 

location index k provides the position. The wavelet 

function is dilated by powers of two and is translated by 

the integer k. In terms of the wavelet coefficients, the 

wavelet equation is 

In equation [3], the term  is the wavelet function 

and the coefficient gk is the kth high pass wavelet 

coefficient. Writing the scaling equation in terms of the 

scaling coefficients as given below, we get 

In equation [4], the term (x)is the scaling function 

and the coefficient hkis the kth low pass scaling 

coefficients. The wavelet and scaling coefficients are 

related by the quadrature mirror relationship, which is 

given by 
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The term N is the number of vanishing moments. A 

graphical representation of DWT is shown in fig. 1. Note 

that, Y0 is the initial signal. 

Fig.1. 1-Dimensional DWT - Decomposition step 

The wavelet equation produces different wavelet 

families like Daubechies, Haar, Coiflets, etc. Wavelets 

are classified into a family by the number of vanishing 

moments N. Within each family of wavelets there are 

wavelet subclasses distinguished by the number of 

coefficients and by the level of iterations.  

II. Ridgelet Transform 

Ridgelet detect objects with line singularities. The 

Finite Ridgelet Transform can be determined by 

calculating the discrete Radon transform followed by the 

application of a Wavelet Transform. Computation of 2D 

Fast Fourier Transform for the image and application of 

1D Inverse Fast Fourier Transform on each of the 32 

radial directions gives the Finite Radon Transform 

(FRAT). The FRAT is used to map the image space to 

projection space since the set of projections of the image 

are taken at wide range of angles. A projection in discrete 

images means summation of all data points that lies 

within the specified unit-width strips.The FRAT of a real 

function on the finite grid Zp
2is defined as 

Here, L (k, l) denotes the set of points that make up 

a line on the lattice Zp
2as in 

Phistograms are to be used and all the pixels of the 

original image need to be passed once in order to 

compute the Kth radon projection (16).  Each output of the 

radon projection is simply passed through the wavelet 

transform before it reaches the output multiplier. As 

shown in fig. 2, Ridgelet use FRAT as a basic building 

block, where FRAT maps a line singularity into point 

singularity, and the wavelet transform has been used to 

effectively detect and segment the point singularity in 

radon domain. 

Fig. 2. FRIT block diagram 

III. Curvelet Transform 

Digital Curvelet Transform can be implemented 

using Fast discrete Curvelet Transform (FDCT) via 

USFFT and FDCT via Wrapping. These two algorithms 

differ by spatial grid used to translate Curvelets at each 

scale and angle. Curvelet Transform has a tight frame 

and combines multi scale analysis and geometrical ideas 

to achieve optimal rate of convergence by simple 

thresholding. It has strong directional character in which 

elements are anisotropic at fine scales. The support of 

these elements is according to the parabolic scaling 

principle length2 width. 

Fast Discrete Curvelet Transform via Wrapping

In FDCT based on Wrapping of  Fourier samples, an 

image of size M X N is taken as an input, where M and N 

are the dimensions and the outputs will be a collection of 

Curvelet co-efficient  indexed by a scale j, 

an orientation l and spatial location parameters k1 and k2. 

„D‟ stands for Digital. 
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In equation (9) the term f(m,n)  is a Cartesian array, 

where where M and N are 

dimensions of the array. Wrapping based Curvelet 

Transform is a multiscale pyramid which consists of 

several subbands at different scales consisting of 

different orientations and positions in the frequency 

domain. Curvelets are very fine at high frequency level 

and at low frequencies they are non-directional coarse 

elements.  

In general curvelet transform can be accomplished 

in the frequency domain, to attain high efficiency. Hence 

two dimensional Fast Fourier Transform (2D FFT) is 

applied to the image to convert it from spatial domain to 

frequency domain prior to curvelet transform. For each 

scale and orientation, a product of Ujl“wedge” is obtained; 

the result is then wrapped around the origin. Finally a two 

dimensional Inverse Fast Fourier Transform (2D IFFT) is 

then applied which yields in discrete curvelet coefficients. 

The discrete curvelet transform can be determined as 

Curvelet transform = IFFT [FFT (Curvelet) × FFT (Image)]  [10] 

The difficulty behind this is that trapezoidal wedge 

does not fit in a rectangle of size 2j × 2j/2 aligned with the 

axes in the frequency plane in which the 2D IFFT could 

be applied to collect curvelet coefficients. Wedge 

wrapping procedure uses a parallelogram with sides 2j 

and 2j/2 to support the wedge data. The wrapping is 

achieved by periodic tiling of the spectrum inside the 

wedge and then collecting the rectangular coefficient area 

in the center. The center rectangle of size 2j × 2j/2 

successfully collects all the information in that 

parallelogram. 

The steps of applying wrapping based FDCT 

algorithm are as follows. 

Step 1: The 2D FFT is applied to an image to obtain 

Fourier samples 

Step 2: For each scale j and angle l, the product 

is formed. 

Step 3: Wrap this product around the origin to obtain 

where the range for m, n, 

and θ is now 0 ≤ m < 2j, 0 ≤ n <2j/2,and −π/4 ≤ θ < π/4. 

Step 4: Apply IFFT to each  and hence collect the 

discrete coefficients  

Fig 
3. Curvelet Tiling of an image in the spectral domain (5levels) 

Fig.3 shows the combined frequency response of 

Curvelets at different scales and orientations in the form 

of rectangular tiling of an image. As the resolution level is 

increased, the Curvelet is more sensitive to curved edges 

and hence curves in an image are represented well.  

IV. IMAGE DENOISING 

Image De-noising is used to produce good estimates 

of the original image from noisy observations. The 

restored image should contain less noise than the 

observations while still keep sharp transitions (i.e. 

edges).Suppose an image f(m,n) is corrupted by the 

additive noise  

g(m,n) = f(m,n) + η(m,n)                         [11] 

where η(m,n) are independent identically distributed 

Gaussian random variable with zero mean and variance 

σ2.Image de-noising algorithms vary from simple 

thresholding to complicate model based methods. 

However simple thresholding methods can remove most 

of the noise. Various types of noise used in are Salt and 

Pepper Noise, Gaussian noise, Random noise, Speckle 

noise and Poisson noise. The Gaussian noise is 

independent at each pixel and independent of signal 

intensity .Random noise is characterized by intensity and 

color fluctuations above and below the actual image 

intensity. The pattern of random noise changes even if 

the exposure settings are identical. Random noise 

revolves around an increase in the intensity of the picture 
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and as such it can be said that random noise are hundred 

folds more than other types of noise. 

A. Algorithm 

The following steps is applicable to Wavelet 

Transform, Ridgelet Transform and Curvelet Transform 

1. Apply the Forward transform to the noisy image. 

2. Threshold the co-efficient to remove some 

insignificant co-efficient by using a thresholding 

function in the corresponding transform domain. 

3. Take Inverse transform of the thresholded co-

efficient to reconstruct a function. 

B. Thresholding Function 

1. Soft Thresholding is defined by a fixed thresholdσ  

0 

2. Hard Thresholding 

These thresholding functions might be a good choice 

because large co-efficient remain nearly unaltered. 

V. EVALUATION CRITERIA 

To compare the results of different curvelet 

thresholding techniques, a image similarity measure is 

used. 

In equation (14) the term fmax is the maximum value 

of the image intensities and MSE is the mean square 

error between the reconstructed image and the original 

image.  

In equation [15] the term f(m,n) is the original 

image and the term is the de-noised 

image. M x N is the number of pixels. The de-noised 

image is closer to the original one when PSNR is higher. 

VI. RESULTS AND DISCUSSIONS 

In this section we present experimental results that 

demonstrate properties of Wavelets, Ridgelet and 

Curvelets and its potential applications. The experiments 

are conducted on several types of gray scale images of 

size 256 x 256 using MATLAB. 

CT scan images and MRI scan images of brain slice, 

X-ray images, Natural images and Satellite images are 

de-noised using Wavelets, Ridgelets and Curvelet 

transform using Wrapping Technique. Various types of 

noise namely Random noise, Additive white Gaussian 

noise, Speckle noise, Salt and Pepper and Poisson noise 

are added. Simulations were carried out for each of these 

transforms for different noise variance levels.  

Inspired by sparse representation of Multiresolution 

transforms (i.e.) Wavelets, Ridgelet and Curvelets are 

applied to image de-noising. Haar wavelet with single 

level of decomposition is used. It is assumed that the 

noise variances were known in order to focus on the 

denoising techniques themselves. Thresholding function 

for the various transform domains is used. 

The Curvelet transform can achieve higher PSNR 

than Ridgelets and Wavelets and the Curvelet transform 

can restore edges better than Ridgelets or Wavelets. 

Edges are blurred due to thresholding of co-efficient in 

the wavelet domain. Ridgelet transform can be used in 

applications where images contain edges and straight 

lines. Ridgelet is effective in detecting linear radial 

structures which are not dominant in medical images. 

The average PSNR gain of various gray scale 

images degraded by Random noise, Salt & Pepper noise, 

Speckle noise, Gaussian noise and Poisson noise with 

Wavelets, Ridgelets and Curvelets are listed in Tables 1 

to 5(17). 

The de-noising  results for various gray scale images 

corrupted with Random noise, Salt and Pepper noise, 

Gaussian noise, Speckle and Poisson noise are shown in 

figures 4 to 9. In this experiment three types of 

Multiresolution transforms namely Wavelets, Ridgelet and 
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Curvelets  based on soft and hard thresholding are  

applied to several gray scale imaging modalities and the 

efficiency of a particular Multiresolution transform in 

denoising a specific imaging modality is justified in terms 

of  PSNR. 

A. Comparison on Natural Images 

Experiments were conducted on 3 standard test 

images „Lena‟, „Barbara‟ and „pout‟ of size 256x256 

pixels. The result shows that the average PSNR gain 

achieved with Curvelets is the highest when compared to 

Ridgelets and Wavelets for images contaminated with 

Salt and Pepper Noise, Gaussian Noise, Speckle Noise 

and random noise and Poisson noise implemented with 

soft and hard thresholding. The results are listed in table 

1. However it is observed that the PSNR gain obtained 

with wavelets is higher with soft thresholding in the 

removal of Poisson noise.  

B. Comparison on Bio-Medical images 

The experiment was simulated on 3 test images 

each, CT, MRI and X-ray of size 256x256 pixels. 

Curvelets outperform Wavelets and Ridgelets in the 

removal of Salt and Pepper noise, Gaussian Noise, 

Speckle noise and Random noise with the exception that 

the Ridgelet transform with hard thresholding is efficient 

in the removal of Salt and Pepper noise. It is also 

observed that Wavelets offers better results in the 

removal of speckle noise in MRI images. 

A negative PSNR gain is obtained with the three 

Multiresolution transforms for images corrupted with 

Poisson noise which justifies that the existing nonlinear 

thresholding strategy offers poor results in the removal of 

Poisson noise in Bio- medical images. 

The improvement in the removal of Poisson noise in 

X-ray images is very small of the order of about 0.5 dB 

with wavelets implemented with soft thresholding where 

Curvelets offer a gain of about 2.11db.  The results are 

tabulated in tables 2, 3 and 5. 

C. Comparison on Satellite Images 

Experiments were conducted on three satellite 

images of size 256x256 pixels. Observations indicate that 

Curvelets implemented with soft and hard thresholding 

proves to be efficient in the removal of Salt and Pepper 

noise, Gaussian noise, speckle noise and random noise 

with the exception that the Ridgelet Transform with hard 

thresholding offers superior results in the removal of Salt 

and Pepper noise in Satellite images. Table 4 illustrates 

the performance of various de-noising techniques on 

satellite images. 

D. Observations 

Three different multiscale transforms viz Wavelets, 

Ridgelets and Curvelets were implemented to denoise 

various imaging modalities degraded by different types of 

noises using soft and hard thresholding. Experiments 

conducted on different data sets reveal the following 

facts. 

1. The average PSNR gain increases for almost all 

types of imaging modalities as the noise variance 

increases. 

2. As the number of decomposition levels increases 

in a wavelet, the average PSNR gain also 

increases. 

3. Curvelets outperforms wavelets and Ridgelets in 

the removal of Salt and Pepper Noise and 

random noise with soft and hard thresholding 

with the exception that Ridgelets offer better 

results with hard thresholding in the removal of 

salt and pepper noise in various imaging 

modalities. 

4. Speckle being an multiplicative noise, a negative 

gain is obtained with Ridgelets and Curvelets 

when denoising MRI images, whereas wavelets 

offers very poor gain ranging from .01 dB to 0.4 

dB which is not much of an improvement to be 

mentioned. 

5. Wavelets, Ridgelets and Curvelets offers inferior 

results in the removal of poisson noise in Bio-

medical images like CT, MRI and X-ray using the 

non-linear thresholding strategy. 

VI. CONCLUSION 

In this paper a strategy for digitally implementing the 

Wavelets, Ridgelets and Curvelets to de-noise gray scale 

images degraded by Salt and Pepper Noise, Gaussian 

Noise, Speckle Noise, Random noise and Poisson noise 

is presented. The results of de-noising are measured in 

terms of PSNR and the comparison is based on the 

average PSNR gain as shown in tables 1 to 5. The 

graphs illustrate the results of the various Multiscale 
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resolution transforms in terms of average PSNR gain. 

The experimental study has been implemented using the 

existing thresholding strategy (i.e.) soft and hard 

thresholding for noise removal. 

Based on the results obtained it is concluded that 

Curvelet outperforms Wavelets and Ridgelets in de-

noising different imaging modalities corrupted with Salt 

and Pepper Noise, Gaussian noise, Speckle noise, 

Random noise and Poisson noise and yields improved 

performance in terms of PSNR. 

Experimental results indicate that the Curvelet 

Transform can provide a more efficient representation for 

images with singularities along smooth curves and is 

suitable for representing edges in images. Curvelet 

transform exhibits good reconstruction of the edge data 

by incorporating a directional component to the traditional 

wavelet transform.  

The evaluation of the results supports the conclusion 

that curvelets has significantly better results than others. 

From the restored images it can be visually depicted that 

edges are well preserved taking the advantage of the fact 

that Curvelets being geometrical, very well align 

themselves to the contours of the edges. The 

reconstruction via curvelet transform does not contain the 

quality of disturbing artifacts along edges that is observed 

in wavelet reconstruction. 

Thus Curvelet transforms enjoys superior 

performance over wavelets and ridgelets in the context of 

denoising.It is also observed that Wavelets, Ridgelets 

and Curvelets implemented with the existing thresholding 

strategy fails to remove Poisson noise in Biomedical 

images, though considerable improvement is obtained 

with Natural images and Satellite images. It is henceforth 

concluded that by using the existing thresholding 

strategy, all three multiresolution transforms fail to 

remove Poisson noise in Bio-medical images. 

VII. FUTURE WORK 

Future research will focus on finding a novel method 

for removing Poisson noise in medical images, especially 

in PET (Positron Emission Tomography) and SPECT 

data which uses Multi Scale Variance Stabilizing 

Transforms (MS-VST) (2) which combines the VST with 

the low pass filter involved in various multi scale multi 

direction transforms (MS-MD). 

Table 1.AVERAGE PSNR GAIN (dB) OF WAVELETS, RIDGELET AND CURVELETS FOR NATURAL IMAGES 

Noise Noise 
Variance 

Soft Thresholding Hard Thresholding 

Wavelet Ridgelet Curvelet Wavelet Ridgelet Curvelet 

Salt 
& 
Pepper 

0.05 0.9253 1.4340 6.3000 0.0094 1.6800 2.4000 

0.08 1.1307 2.2990 7.1700 -0.0432 2.5420 2.0900 

0.2 2.8117 3.7370 7.3000 2.5813 3.8830 1.3600 

Gaussian 0.01 2.6311 0.8930 7.0200 2.6391 1.1250 8.7000 

0.02 2.8258 1.0340 6.5000 2.8575 1.1970 3.9000 

0.2 2.8312 0.8810 0.6900 2.8461 0.6810 -2.7900 

Speckle 0.02 2.4074 -0.7610 4.0700 2.4109 -0.4950 6.8700 

0.04 2.6694 0.6180 6.9800 2.6741 0.8850 8.5600 

0.08 2.8161 1.9030 9.5200 2.8012 2.1730 6.9100 

Random 20 1.0449 -0.1051 5.9500 1.0381 0.1116 7.9000 

25 1.1061 1.2445 6.4037 1.1050 1.4536 9.0002 

30 1.1649 1.9204 7.4085 1.1440 2.1339 9.7406 

Poisson - 1.6839 -2.8073 0.6900 1.7420 -2.5317 3.3800 
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Table 2.AVERAGE PSNR GAIN (dB) OF WAVELETS, RIDGELET AND CURVELETS FOR CT IMAGES 

Noise Noise 
Variance 

Soft Thresholding Hard Thresholding 

Wavelet Ridgelet Curvelet Wavelet Ridgelet Curvelet 

Salt 
& 
Pepper 

0.05 0.4283 2.7960 4.9000 -0.0627 2.8030 1.9800 

0.08 0.5593 3.4500 5.3900 0.0156 3.4040 1.6500 

0.2 1.7997 4.1070 5.2900 0.1645 4.0020 1.2100 

Gaussian 0.01 1.3526 1.1100 3.3000 1.4068 1.0730 6.2000 

0.02 1.7930 1.2130 3.2200 1.7947 1.1250 2.9900 

0.2 2.0781 0.8400 0.5500 2.1114 0.6570 -2.5600 

Speckle 0.02 0.8966 -1.2180 -0.2600 0.4616 -1.0170 3.6800 

0.04 1.2733 0.0640 2.3000 0.6086 0.2370 5.2300 

0.08 1.5366 1.1940 4.3600 0.7104 1.3920 4.8700 

Random 20 1.0196 0.0522 4.5100 1.1118 0.2602 7.5000 

25 1.6095 1.0374 4.7105 1.6475 1.2164 8.2324 

30 1.7990 1.7243 5.5380 1.8093 1.8854 8.9845 

Poisson - -0.0555 -3.2722 -4.2000 0.2298 -3.0526 0.2500 

Table 3.AVERAGE PSNR GAIN (dB) OF WAVELETS, RIDGELET AND CURVELETS FOR MRI IMAGES 

Noise Noise 
Variance 

Soft Thresholding Hard Thresholding 

Wavelet Ridgelet Curvelet Wavelet Ridgelet Curvelet 

Salt 
& 
Pepper 

0.05 0.0586 3.7230 5.1300 0.0312 3.6680 1.9800 

0.08 0.0850 4.1760 5.3700 -0.0356 4.1010 1.6700 

0.2 0.5337 4.1900 5.0000 -0.0323 4.0560 1.0500 

Gaussian 0.01 1.1518 1.3140 2.7000 1.2319 1.2380 4.6000 

0.02 1.4960 1.3510 2.6700 1.4981 1.2270 2.6100 

0.2 1.7628 0.0810 0.6700 1.7637 0.5360 -1.7700 

Speckle 0.02 0.3034 -2.9490 -5.3100 0.0125 -2.8990 -2.7100 

0.04 0.3409 -1.5350 -2.4000 0.0432 -1.4780 -0.0200 

0.08 0.4027 -0.1900 0.3100 0.0456 -0.1210 1.8600 

Random 20 0.8851 0.7079 4.2000 0.9995 0.7072 6.4400 

25 1.3649 1.5346 5.4612 1.4019 1.5343 7.6282 

30 1.6852 2.2139 6.4439 1.7127 2.1995 8.6245 

Poisson - 0.0800 -4.4287 -8.3000 0.1174 -4.3757 -5.7000 
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Table 4.AVERAGE PSNR GAIN (dB) OF WAVELETS, RIDGELET AND CURVELETS FOR SATELLITE IMAGES 

Noise Noise 
Variance 

Soft Thresholding Hard Thresholding 

Wavelet Ridgelet Curvelet Wavelet Ridgelet Curvelet 

Salt 
& 
Pepper 

0.05 0.0344 5.3850 6.3000 0.0001 5.1020 2.4000 

0.08 0.0667 5.4710 6.3000 0.0675 5.2630 1.9000 

0.2 0.5262 4.9400 5.5000 -0.0343 4.6530 1.2000 

Gaussian 0.01 1.9005 3.3570 5.4000 1.8747 3.1090 6.9000 

0.02 2.0472 3.2210 5.0000 2.0077 2.9520 3.5000 

0.2 1.9799 0.9200 0.8000 1.9783 0.7540 -2.0000 

Speckle 0.02 0.6044 1.3540 2.1000 0.1060 1.5830 5.1000 

0.04 0.6674 2.6210 5.1200 0.1391 2.8150 7.7000 

0.08 0.6686 3.6940 7.9000 0.1168 3.8320 7.3000 

Random 20 2.2492 3.5097 8.7000 2.2806 3.7687 11.2000 

25 2.4565 4.1449 9.8826 2.4566 4.3771 12.1821 

30 2.5897 4.6310 10.7962 2.5590 4.8537 13.0017 

Poisson - 0.6246 -0.2546 -1.4200 0.1923 -0.0565 1.7100 

Table 5.AVERAGE PSNR GAIN (dB) OF WAVELETS, RIDGELET AND CURVELETS FOR X-RAY IMAGES 

Noise Noise 
Variance 

Soft Thresholding Hard Thresholding 

Wavelet Ridgelet Curvelet Wavelet Ridgelet Curvelet 

Salt 
& 
Pepper 

0.05 0.2510 3.1060 5.7790 -0.0520 3.1720 2.2860 

0.08 0.3633 3.6990 5.9800 0.0103 3.6470 1.5700 

0.2 1.5170 4.1360 5.4410 0.0506 4.0020 1.0660 

Gaussian 0.01 1.4300 1.3230 5.1800 1.9200 1.3110 6.8900 

0.02 1.3600 1.4030 4.8300 1.7700 1.3440 6.2200 

0.2 0.2600 0.8170 0.7000 0.2100 0.6300 0.7900 

Speckle 0.02 0.8380 -0.8010 6.3980 1.4660 -0.6280 9.5764 

0.04 1.8200 0.4280 7.3400 1.8400 0.5710 10.5000 

0.08 2.1000 1.4620 8.0800 2.0400 1.6220 11.3000 

Random 20 1.4000 0.4484 2.4300 0.2400 0.5854 5.9300 

25 0.3000 1.2793 4.7500 0.3000 1.4140 6.6300 

30 1.7500 1.8922 6.3200 0.3100 2.0713 4.9800 

Poisson - 0.5100 -2.9882 -1.7700 0.6100 -2.8202 2.1100 
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Fig. 4. Denoising results of curvelet transform with soft and 

hard thresholding (Gaussian Noise – variance = 0.01) 

(a) Original (b) Noisy (PSNR=20.7430dB) (c) Soft 

(PSNR=25.1597dB) (d) Hard (PSNR =27.8328dB) 

Fig. 5. Denoising results of  curvelet transform with soft and 

hard thresholding(Salt & Pepper  Noise-variance = 0.05) 

(a) Original (b) Noisy (PSNR=18.4051dB) (c) Soft 

(PSNR= 23.8509dB) (d)Hard (PSNR =20.6954dB) 

Fig. 6. Denoising results of Ridgelet transform with soft and hard 

thresholding (x ray -3 Poisson Noise) 

(a) Original (b) Noisy (PSNR=38.7764dB) (c) Soft 

(PSNR=35.7072dB) (d)Hard (PSNR =35.8809dB) 

Fig. 7. Denoising results of curvelet transform with soft and hard 

thresholding (CT1 Speckle Noise: Variance = 0.04) 

(a) Original (b) Noisy (PSNR=34.7777dB) (c) Soft 

(PSNR= 35.0319dB) (d)Hard (PSNR =35.2520dB) 
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Fig. 8. Denoising results of  Wavelet  transform with soft and 

hard thresholding (Gaussian Noise: variance = 0.02) 

(a) Original  (b) Noisy (PSNR= 33.5420dB) (c) Soft 

(PSNR=35.5685dB ) (d)Hard (PSNR =35.5290dB) 

Fig. 9. Denoising results of  Wavelet  transform with soft and 

hard thresholding (Random σ=20) 

(a) Original  (b) Noisy (PSNR=36.0586dB ) (c) Soft 

(PSNR=36.8511dB)  (d)Hard (PSNR =37.022dB) 
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