
IMPROVING THE RELIABILITY OF A SOFTWARE SYSTEM USING
ACTIVITIES SEQUENCE OF SOFTWARE DEVELOPMENT

1 2
Chinnaiyan. R, Somasundaram .S 

1
Assistant Profressor , Department of Computer Applications,

Research Scholar , Department of Mathematics , Coimbatore Institute of Technology, Coimbatore ,India
2
Assistant Professor ,  Department of Mathematics , Coimbatore Institute of Technology, Coimbatore ,India

1
Email: vijayachinns@gmail.com

Abstract

In this paper we have proposed a novel model to achieve the reliability of the system during the development level using a
sequence of activities. We have argued that the reliability of the software system may be improved during the development stage
and it automatically increases the reliability of the whole system. A majority of mission-critical or safety-critical systems are
complex computer-controlled systems, which are increasingly relying on software and software does contribute to system
failures. To avoid system failures and crashes, research is being done in one of the key areas know as 'Software reliability
analysis' and that is inevitable for software developers. Software reliability is an important metric in determining overall system
stability and reliability, through error prevention, fault detection and removal. For this, we have proposed a novel model to achieve
the reliability of the system during the development level using a sequence of activities

Key words: Reliability, Safety-Critical Systems, System Crash, Software ReliabilityAnalysis, Fault-Detection

I. INTRODUCTION

Reliability is a key factor and attribute in software
quality. Reliability metric for software is used to describe
the probability of the software operating in a given
environment within the design range of input without
failure. Therefore, software reliability is a function of how
well the software's purpose is delineated, built, and tested;
it is not a function of time. This concept is a fundamental
issue that differentiates hardware and software reliability
theory and assessment. As awareness grows,
organizations are beginning to include software reliability
requirements in their specifications. This has led to the
development of software reliability metrics and models to 
quantify software reliability.

Software Reliability analysis is the process of directing
and focusing development efforts, using proven best
practices, to ensure that specified reliability and quality is 
achieved. As such it encompasses all aspects of the
software development process. One way of managing
software quality is to use reliability models. Software
reliability is the probability of a software product operating
for a given period of time in a particular environment
without exhibiting any failures 4.

Many methods for estimating the reliability are
available. We mention only some works: 4 and 5. However
the failure intensity, or failures per unit time, of a software-
based system, depends on how the system is used. The
usage is characterized by the operational profile, the set of
operations available on the system and their associated
probability of occurrence. Reliability growth models
assume that during testing the program is executed
several times using test cases that are selected randomly

according to the operational profile of the program under
evaluation .The collected test data can, for instance, be
information on: test identification, effective execution time,
set-up time, total test time, result (passed or severity of
failure: critical, severe, major or minor), whether or not the
cause of a failure has been removed, where the faults
corresponding to the failures were found and corrected.
More considerations about program testing and analysis
can be found in 1, 2 and 4.

From practical point of view, this testing step is one of
the following interrelated software reliability sub-
processes in a typical software engineering life cycle:
document construction, integration, inspection and
correction; code construction, integration, inspection and
correction; test preparation and testing; fault identification
and fault repair; validation of repairs and re-testing. A
method based on testing a finished program require the
knowledge of program's operational distribution and a very
large number of tests for modest estimates. Another
approach in estimating the software quality is based on the
concept of trustability introduced by Howden in 3.

II. SOFTWARE FAILURE MECHANISMS

There are some important characteristics of software
failures.

These are:

• Failure cause

• Wear-out

• Repairable system concept

• Time dependency and life cycle

12 International Journal on Information Sciences and Computing, Vol.3, No.2, July 2009



• Environmental factors

• Reliability prediction

• Redundancy

• Interfaces

• Failure rate motivators

• Built with standard components

Software defects are mainly design defects and
software does not have energy related wear-out phase like
the hardware case, errors can occur without warning. In
some cases periodic restarts can help recover from some
system errors such as memory allocation and others.
Software reliability is also not a function of time. It is time
independent and lifecycle of a software only ends when it
is useless or an upgrade is released. Environmental
factors do not affect software reliability, but they might
affect program inputs. Hardware reliability can be
predicted from some physical basis but software reliability
cannot since it depends completely on human factors in
design.

Fig. 1. Lifetime of a hardware product

Fig. 2. Lifetime of a software product

If identical software is used redundancy of software
system is not improved. If there is a fault in the software all
identical software will have this fault. Software interfaces
are purely conceptual other then visual this makes
reliability measurement harder. Failure rate motivators are
also not predictable from analysis of separate statements.

Well-understood and extensively-tested standard parts
will help improve maintainability and reliability. But in
software industry, we have not observed this trend. Code 
reuse has been around for some time, but to a very limited
extent. Strictly speaking there are no standard parts for
software, except some standardized logic structures

III. PROPOSED MODEL

Step 1. Start the process.

Step 2. "Write Specification" .

If Error on Specification

do step 3.

Else

do step 6.

Step 3. The "Investigation" on specification.

Step 4. The "Documentation" for specification".

Step 5. Do step 2.

Step 6. Overall "Module" & "Design" Specification.

Step 7.  Module - 1 , Designing
         If Error on Designing
              do step  8.
         Else 
              do step  11.

Step 8. The "Investigation" on Designing.

Step 9. The "Documentation" for specification.

Step 10. If Error on Designing
             do step 6.
             do step 7.
       Else If Error on Specification
             do  step 3.

Step 11.  Coding .
        If Error on Coding
              do step 12.
        else 
              do step 13.

Step 12. The "Investigation" for Coding
       If Code Error 
               do step 11.
       Else if Design Error
               do step 8.

Step 13. Testing.
      If Testing Error 
               do step 12.
       Else 
               do step 14.

13International Journal on Information Sciences and Computing, Vol.3, No.2, July 2009



Step 14. End of Process.

IV. GRAPHICAL REPRESENTATION OF THE MODEL

V. SIMULATOR FOR THE PROPOSED MODEL

   #include <stdio.h>
   #include <conio.h>
   void fun_spec();
   void fun_spec_in();
   void fun_spec_doc();
   void fun_desg();
   void fun_mod1();
   void fun_desg_in();
   void fun_desg_doc();
   void fun_cod();
   void fun_cod_in();
   void fun_cod_doc();
   void fun_test();
   void fun_stest();

   void fun_stest()
   { 
               int    I;

printf("\n\t\t I am System Testing Section \n\n ");
printf("\n\tChecking \n\t 1.For, if error\n\t 2.Non Error\n");
   scanf("%d",&i);
   if(i==1)
     fun_cod_in();
   else if(i==2)
     exit();
   else
     fun_stest();
   }
   void fun_test()
   {
   int    I;

   printf("\n\n\t\t I am Testing Section \n\n ");
   printf("\n\tChecking \n\t 1.For, if error\n\t 2.Non 
Error\n");
   scanf("%d",&i);
   if(i==1)
    fun_cod_in();
   else if(i==2)
   {
   clrscr();
     fun_stest();
    }
   else
     fun_test();
   }
   void fun_cod_doc()
   {

 printf("\n\tThe Documentation for coding");
   }
   void fun_cod_in()
   {
   int I;

   printf("\n\t The Investigation for Coding");
   fun_cod_doc();

   printf("\n\n\tChecking \n\t 1.Code error\n\t 2.Design 
Error\n");
   scanf("%d",&i);
   if(i==1)
     fun_cod();
   else if(i==2)
     fun_desg_in();
   else
     fun_cod_in();
   }
   void fun_cod()
   {

14 Chinnaiyan R. et al : Improving the Reliability of a Software System Using...



   int    I

   printf("\n\t\t I am Code Section \n\n ");
   printf("\n\n\tChecking \n\t 1.For, if error\n\t 2.Non
Error\n");
   scanf("%d",&i);
   if(i==1)
     fun_cod_in();
   else if(i==2)
   {
     clrscr();
     fun_test();
     }
   else
     fun_cod();
   }
   void fun_desg_doc()
   {

  printf("\n\t I am Documentation for designing");
   }
  void fun_desg_in()
   {
   int    I;

   printf("\n\n\t The investigation for Designing \n\n ");
   fun_desg_doc();

   printf("\n\n\tChecking \n\t 1.Specification error\n\t 
2.Designing Error\n");

   scanf("%d",&i);
   if(i==2)
   {
     fun_desg();
     fun_mod1();
    }
   else if(i==1)
     fun_spec_in();
   else
     fun_desg_in();
   }
   void fun_mod1()
   {
   int    I;

   printf("\n\n\t I am Module - 1 Design \n\n ");
   printf("\tChecking \n\n\t 1.For error\n\t 2.Non Error\n");
   scanf("%d",&i);
   if(i==1)
     fun_desg_in();
   else if(i==2)
   {
   clrscr();
     fun_cod();
     }

   else
     fun_mod1(2);
   }
   void fun_desg()
   {

   printf("\n\n\t\t I am Overall Design,Module 
Specification\n\n ");
   fun_mod1();
   }
   void fun_spec_doc()
   {

 printf("\n\n\t The Documentation for investigation of 
Specification ");
   }
   void fun_spec_in()
   {

   printf("\n\n\t The investigation for Specification");
   fun_spec_doc();
   fun_spec();
   }
   void fun_spec()
   {
   int    I;

   printf("\n\n\t\t I am write Specification\n\n ");
   printf("\n\tChecking \n\n\t 1.For error\n\t 2.Non
Error\n");
   scanf("%d",&i);
   if(i==1)
     fun_spec_in();
   else if(i==2)
   {
   clrscr();
   fun_desg();
     }

 else
 fun_spec();

   }
 void main()
   {

  clrscr();

 printf("\t\tDemo for Software Development\n\n");
 fun_spec();

   }

VI. DISCUSSION

The following are the essential elements of a Software 
Development project to ensure a reliable software 
product

1) Specify the requirements completely and in detail
(system, software)

15International Journal on Information Sciences and Computing, Vol.3, No.2, July 2009



2) Make sure that all project staff understand the
requirements

3) Check the specifications thoroughly. Keep asking
'What-if…….?’

4) Design a structured program and specify each module
fully.

5) Check the design and the module specifications
thoroughly against the system specifications

6) Check written programs for errors, line by line

7) Plan module and system tests to cover important input
combinations , particularly at extreme values

8) Ensure full recording of all development notes, tests,
checks , errors and program changes

VII. CONCLUSION

Software reliability is a key part in software quality but
software reliability improvement is hard because there are
no generic models. Measurement is very important for
finding the correct model. For any software industry,
achieving software reliability is the key task. Achieving
Software reliability is hard because the complexity of the
software tends to be high. Reliability is an attribute of
quality and software quality can be measured .So reliability
depends on high software quality. So at each development
phase, some quality attributes are applied and the
reliability and quality of the software can be improved by
applying software metrics at each of these development
phases. This metrics measures software reliability in
Requirements, Design and coding, and testing phases

REFERENCES

[1]. W. E. Howden, Functional Program Testing and
Analysis, McGraw-Hill, February, 1987.

[2]. W. E. Howden, Systematic informal software testing
and analysis methods, Proceedings, Seventh
International Software Quality Week, SRI, June,
1994.

[3]. W. E. Howden, Y. Huang, Software Trustability, Fifth
International Symposium on Software Reliability
Engineering, Monterey, California, November 1994.

[4]. J. D. Musa, Software reliability engineering,
McGraw-Hill, 1999.

[5]. Denise M. Woit, Estimating software reliability with
hypothesis, CRL, McMaster University,April, 1993.

[6]. G.J.Myers , Software Reliability : Principles and
Practice.J.Wiley (1976)

[7]. B.W.Kernighan and P.J.Plaugher , The Elements of
Programming Style. McGraw-Hill (1974)

[8]. E.Yourdan, Techniques of Program Structure and
Design , PHI (1975)

[9]. J.D.Musa , Software Reliability Engineering,
McGraw-Hill (1999)

[10]. J.D.Musa, A.Iannino and K.Okumoto , Software
Reliability Prediction and Measurement McGraw-
Hill (1987)

[11]. N.G.Leveson, Safeware-System Safety &
Computers,Addison Wesley (1995)

[12]. D.J.Smith and K.B Wood, Engineering Quality
nd

Software , 2 Edition Elsevier (1989)

R.Chinnaiyan, Assistant Professor,
D e p a r t m e n t o f C o m p u t e r
Applications, A.V.C College of
Engineering, Mayiladuthurai, has 8
years of teaching experience. He is a
life member in ISTE, CSI of INDIA. He
is now doing his research in Anna
University. His research interest
includes Software Reliability, Qos

and Object OrientedAnalysis and Design.

16 Chinnaiyan R. et al : Improving the Reliability of a Software System Using...


