
I. INTRODUCTION

Monte-Carlo Simulation is one of the standard tools
for comparing and validating statistical methodologies. In 
this paper an attempt has been made to use simulation
techniques to examine the variation associated with the
backcalculation estimates of several key parameters of
HIV/AIDS. As already mentioned in the previous chapters
the backcalculation methodology has certain uncertainties
associated it. Through the simulation study, an attempt
has been made to quantify the extent of uncertainties due
to the variation in the incubation period distributions and
infection curves. Several incubation period distributions
and infection curves have been used in the simulation
study, which were described in the previous chapters and
the results are reported with variation associated with
some key parameters of the backcalculation estimates of
HIV/AIDS.

II. GENERATION OF AIDS DATA

One of the main objectives of the present thesis is to
give backcalculation estimates of some key disease
measures of HIV/AIDS in India. The first step in this study
has been designed to simulate the data structure of Indian
Surveillance databases.

Following the approach of Brookmeyer and Gail
(1988) and Ding (1996) we have assumed a multinomial
distribution with unknown sample size for the reported
AIDS cases. The reported AIDS cases were generated
from this multinomial distribution. The likelihood of the data
under multinomial distribution is given by

[1]

Where
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The likelihood function given in [1] is the conditional
likelihood equation. Here X denote the number of AIDSj

cases reported in the interval [T , T ), j = 1,2,…,L. and Xj-1 j L+1

is the number of individuals infected before T who haveL

not becomeAIDS by time T . One of the problems here is toL

estimate the total number of infection N before the time T .L

This number is the total number of AIDS cases that may
develop from the number of infected individuals infected
before T . We assume that all who have infected with HIVL

will ultimately become AIDS cases. For simulation of data
under this model it is assumed that all the parameters of
the model in equation [1] be known. According to
NACO(2002) report by the end of 2002 around 4 million
people are living with HIV infections. For the simulation
study we have assumed N to be 4 millions and in the next
step we simulate the AIDS cases X . The start of thej

infection in India is assumed to be 1981and therefore T is0

taken to be January 1981. The reported AIDS cases are
available from 1986 (T = 1986) to December 20021

(T =2002). There are 17 time points (yearly) at whichL

yearlyAIDS cases are available for India.
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For simulating X , the probability of becomingAIDS inj
th

the j interval is given by

              [2]

must be known. Calculation of these probabilities needs
the infection curve and infection period distribution is
known. Hence in our simulation study, we have assumed 
the incubation period distribution as the Weibull
distribution with median 10 and 15 years based on various
reports.The Weibull model given by Brookmeyer and

2.516
Goedort (1989) is F(t) = 1-exp(-0.0021t ). Based
on this model median incubation period with 15 years is

2.516
F(t) = 1-exp(-0.000762t ). This Weibull distribution has
been used as incubation period model because this model
has been extensively used in the literature. The infection
density I(È,t) is assumed to be logistic prevalence model
given by

                                         [3]

where, è è and è are the parameters of infection curve1, 2 3

and k is a normalizing constant which makes the infection
curve as infection density as given in section 3.5. The
parameters of the model estimated to be è =1.77, è = -1 2

19.86 and è  = 0.33. The choice of infection curve and its 3

parameters were made based on previous experience on
using backcalculation methodology for IndianAIDS data.

Once p(è) and N are known, several samples fromj

multinomial distribution can be selected and the behaviour
of the estimates for N and è can be studied. But the aim ofj

the present simulation study is not to examine the behavior
of the estimates of N and è instead we would like toj

analyse the uncertainties of the backcalculation estimates
of N and the projected AIDS cases due to alternative
choice of incubation period distributions and infection
curves. Therefore only two sets of AIDS data with 17 time
points was generated by taking , j = 1,2,…,17.

th
This is the expected AIDS case in the j interval
corresponding to Weibull model with median 10 and 15
years. The two basic sets of AIDS data used in our
simulation study are the following:

Set I:

Weibull model with median incubation period 10 years is

2.516
             F(t) = 1-exp(-0.002100t )                         [4]

Set II:

Weibull model with median incubation period 15 years is

2.516
          F(t) = 1-exp(-0.000762 t )                           [5]

III. SELECTION OF ALTERNATIVE INCUBATION

PERIOD DISTRIBUTION

It is well known that the backcalculation estimates
are very sensitive to changes in the incubation period
distribution. Therefore one of our objectives is to quantify 
the uncertainties associated with these alternative
models. In this paper, we have used ten models for
incubation period distribution via. Weibull model, Gamma
model, Log-logistic model, Log-normal model,
Generalized exponential model, Generalized log-
logistic model, Generalized gamma model, Mixed Weibull
model, Change point model with Weibull hazard and
Immune Invasion level model

To use the above models in our analysis the
parameters of these models must be specified. The
parameters can be estimated only when the data on
incubation period is available. In the absence of data for
incubation period distribution for Indian population, we
have decided to use the incubation period data simulated
from the assumed Weibull model with median 10 and 15
years as described in the previous section. All the nine
models excluding the Weibull model were fitted to 5000
observations simulated from Weibull model. Such
alternative models help us to understand the effects of
incorrect specification of incubation period distributions on
the baclcalculation estimates.

The data for the Weibull model has been generated 
using SAS IML software package and the parameters are
estimated under different incubation model set up. The
parameters of alternative models when the true underlying
incubation period distribution is Weibull are presented in
tables. Table 1 refers to a median incubation period of 10 
years and table 2 refers to a median incubation period of
15 years.
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Table 1. Parameter estimates of incubation models 
(Simulated data using Weibull model with median 10 

years ë = 0.0021 and á  = 2.516)

Table 2. Parameter estimates of incubation models 
(Simulated data using Weibull model with median 15 

years ë = 0.000762 and á = 2.516)

The quartiles Q , Q and Q and the probability values at 7,1 2 3

10 and 13 years viz., F(7), F(10) and F(13) are given in
table 1. The values 7,10 and 13 are first, second and third
quartiles of the Weibull distribution. The quartiles and
probability values of 7, 10 and 13 reflect that the log-
logistic and generalized log-logistic distributions are
similar to the Weibull distribution at these points.
Generalized gamma model is totally different at these
points. Similarly the fitted lognormal and immune Invasion
level models are different from Weibull models at first and
second quartiles.

The parameter estimates of the alternative models
for data generated from Weibull with median 15 years are
given in Table 2. The quartiles and probability values of
Weibull distribution reveals that these parametric
uncertainties in general reflect a incubation period
distribution different from a Weibull model. The second
and third quartiles of the fitted generalized log-logistic,
mixed Weibull and change point models are very close to
the second and third quartiles of the Weibull model.
Similarly the first quartile of generalized exponential model
is very close to that of the Weibull model. Hence the above
ten alternatives models considered in the analysis explain
wide range of incubation period distribution.

IV. ALTERNATIVE INFECTION DISTRIBUTIONS

Simulated AIDS data depends on the true incubation
period distribution and infection density. The true
incubation period distribution is taken to be Weibull and the
infection density is taken to be normalized logistic
prevalence curve. To understand the uncertainties of the
backcalculation estimates due to alternative incubation
period distribution, ten incubation models has been
considered in the previous section. The uncertainties due
to alternative infection densities are analysed based on the
six infection densities via, Logistic Prevalence, Logistic
incidence, Double Exponential incidence, Log-logistic
incidence, Exponential incidence and Root Exponential
incidence.

V. UNCERTAINTIES OF BACKCALCULATION

ESTIMATES

In this section, backcalculation estimates of the
parameters of the infection density, minimum size of
epidemic and projected number of AIDS cases based on
the simulated data are presented.

5.1 Uncertainties due to Incubation Period

Distribution

For simulation of AIDS data, the incubation period
distributions have been taken to be Weibull with median 10
years (ë = 0.0021 and á = 2.516) and median 15 years (ë =

Incubation

Model
Parameters

1Q
2Q 3Q

F(7) F(10) F(13)

Gamma
	= 2.209652

k = 4.650859
6.80 9.56 12.98 0.2681 0.5386 0.7517

Log-logistic

=0.104152

� =3.569923
7.06 9.61 13.07 0.2445 0.5362 0.7468

Log-normal
�= 2.218545

	= 0.510080
6.52 9.20 12.97 0.2965 0.5654 0.7515

Generalized

Exponential


= 0.229635

� =5.614001
6.62 9.38 13.05 0.2849 0.5513 0.7475

Generalized

Log-logistic

1m =

0.940961

2m =

50.10286

�= 3.956737

=  0.378575

7.03 9.99 13.20 0.2479 0.5011 0.7371

Generalized

Gamma
1
=0.197618

2
=0.194617

3
=3994.574

4.94 8.63 13.84 0.3951 0.5792 0.7188

Mixed

Weibull

Model

1�= 2.652815

1
= 0.085546

2�=2.195428

2
=0.088324

6.98 9.96 13.25 0.2517 0.5034 0.7338

Change

Point

Model

1
=0.002148

1�=2.504745

2
= 0.001939

2�= 2.542406

7.02 9.99 13.24 0.2489 0.5013 0.7344

Immune

Invasion

level Model


=

0.398128 �=

0.049518

5.66 9.01 13.15 0.3506 0.5688 0.7504

Incubation
Model Parameters 1Q 2Q

3Q F(10) F(15) F(20)

Gamma 	=3.275354

k =4.703653
10.22 14.33 19.43 0.2373 0.5386 0.7712

Log-logistic 
=0.069226

� =3.609797
10.66 14.45 19.59 0.2095 0.5339 0.7639

Log-normal �=2.624700

	=0.509970
9.79 13.81 19.47 0.2638 0.5649 0.7665

Generalized
Exponential


=0.153135

�=5.627206
9.94 14.08 19.59 0.2538 0.5508 0.7637

Generalized
Log-logistic

1m =0.940954

2m =50.10071
� =4.359636
=0.378573

10.6 15.02 19.77 0.2203 0.4989 0.7605

Generalized
Gamma

1
=0.130078

2
=0.130073

3
=3978.496 7.39 12.89 20.67 0.3741 0.5814 0.7337

Mixed
Weibull

1�=2.652824

1
=0.057176

2�=2.195421

2
=0.059033
10.61 15.04 19.76 0.2197 0.4982 0.7608

Change
Point
Model

1
=0.000698

1�=2.560998

2
=0.000691

2�=2.544134
10.53 15.02 19.80 0.2244 0.4989 0.7591

Immune
Invasion
level Model


=0.401211

�=0.020306
8.65 13.65 19.68 0.3169 0.5640 0.7502

49Ravanan et al : A Simulation Study on Uncertainties Associated with Backcalculation Methodology



0.000762 and á = 2.516). The infection density is assumed
to be logistic prevalence. The following tables give the
estimates of the minimum size of epidemic and projected 
AIDS cases.

Table 3. Uncertainties due to alternative incubation 
distributions (True incubation period distribution 

Weibull with median 10 years
ë = 0.0021 and á = 2.516) 

Table 4. Uncertainties due to alternative incubation 
distributions (True incubation period distribution 

Weibull with median 15 years
ë = 0.000762 and á = 2.516)

In the above tables, the estimates under the Weibull model
have been considered as the correct figures because the 
simulation was done assuming Weibull model. The
estimates under alternative models represent the
uncertainties due to deviation from the assumed
incubation period distribution. The values are very much

affected due to the changes in the incubation distribution.
The values of the coefficient of variation are computed for

and projectedAIDS cases based on the true incubation
Weibull model. Hence the value of the Weibull in respect of

andprojectedAIDScases are takenas truemeanvalue.

The deviations from these values are taken for computing
standard deviation. The co-efficient of variation is very
high in the case of . The estimates are also very sensitive
to alternative specification of the median incubation
period. The co-efficient of variation for changes from
18% to 23% where as for Projected AIDS cases the co-
efficient of variation changes from 2% to 15%. Therefore
the estimates are very sensitive to the changes in the
parameters of the incubation period distribution. Short-
term prediction with long incubation period gives reduced
estimates compared to short incubation period models.
But the is very much affected with long incubation period
distribution. It can be noted that the projected AIDS cases
obtained under all other alternative models are very close
to each other although they are different from Weibull
model. This may be due to the fact that the parameter
estimates of all the alternative models were obtained using
the Weibull generated data of incubation period
distribution. This suggests us that wrong model selection
results in uncertainty of the projected AIDS cases but
these uncertainties are not volatile across alternative
wrong specifications. But this is not the case for the
parameter . The values are very much affected by
various choices for the incubation period. Hence the
ultimate number of AIDS cases that may develop in a
region cannot be specifically measured under
backcalculation methodology although short-term
prediction is possible.

5.2 Uncertainties due to alternative infection

densities

The data of AIDS cases were generated using
logistic prevalence infection density. In the last section
uncertainties of backcalculation estimates for alternative
incubation period distribution were studied. Another
potential source of uncertainties is assumed infection
curve or infection density. The following tables give
variation in the backcalculation estimates due to
alternative choices of infection densities corresponds to
median incubation period of 10 and 15 years respectively.

Projection of AIDSIncubation
Model

Parameters of 
infection
density

�

N
2�

2003 2004 2005 2006

Weibull
1�=    1.7749

2�=-19.8599

3�=    0.3343
4055786 0.00 217533 303885 424511 593018

Gamma
1�=    1.9492

2�=-19.8871

3�=    0.3342
3729064 29.45 220474 307962 430161 600844

Log-logistic
1�=    1.7703

2�=-20.0398

3�=    0.3335
4440024 97.23 220069 307194 428798 598539

Log-normal
1�=    1.6913

2�=-20.8357

3�=    0.3346
4196915 63.36 220682 308376 430912 602132

Gen.
Expo.

1�=    1.8108

2�=-19.8621

3�=    0.3346
3909394 31.13 220710 308423 430987 602251

Gen.
Log-logistic

1�=    1.7037

2�=-19.8599

3�=    0.3216
2770510 113.67 216421 299288 413625 571368

Gen.
Gamma

1�=    1.7737

2�=-19.8586

3�=    0.3392
2346462 255.87 223477 313748 440476 618386

Mixed
Weibull

1�=    1.8170

2�=-19.8708

3�=    0.3344
3917101 0.23 220654 308289 430726 601787

Change Point
Model

1�=    1.8540

2�=-19.8527

3�=    0.3344
3827602 0.44 220635 308417 430560 601985

Immune
Invasion level
Model

1�=    1.8137

2�=-19.7514

3�=    0.3385
4343189 231.85 223135 313044 439167 616089

C.V - 18.42 - 1.70 1.93 2.22 2.55

Projection of AIDSIncubation

Model

Parameters of 

infection

density

�

N
2�

2003 2004 2005 2006

Weibull
1�=    1.7941

2�=-19.8699

3�=    0.3343

4012478     0.00   97176 135802 189752 265110

Gamma
1�=    2.1667

2�=-19.1384

3�=    0.3285

4119278 158.78 111747 155264 215695 299619

Log-logistic
1�=    2.0608

2�=-19.0373

3�=    0.3258

4881722 307.78 111045 153876 213196 295355

Log-normal
1�=    1.6839

2�=-20.5469

3�=    0.3282

5225986 406.34 111587 154994 215259 298934

Gen.

Expo.

1�=    1.7375

2�=-19.8925

3�=    0.3291

4959690 188.07 111860 155510 216166 300456

Gen.

Log-logistic
1�=    1.9191

2�=-19.0362

3�=    0.3209

5228504 60.70 111120 153687 212394 293348

Gen.

Gamma
1�=    1.1984

2�=-23.9688

3�=    0.3399

3083489 111.26 114771 161249 226540 318261

Mixed

Weibull

1�=    1.6088

2�=-21.9522

3�=    0.3313

5106661    6.08 112584 156865 218527 304398

Change Point

Model
1�=    1.7907

2�=-19.8727

3�=    0.3311

4616337    8.37 112517 156829 218199 304228

Immune

Invasion level 

Model

1�=    1.4355

2�=-22.9673

3�=    0.3374

3442759 47.19 114112 159939 224157 314146

C.V - 22.55 - 15.69 15.32 14.96 14.66

�

N

�

N

�

N

�

N

�

N

�

N
�

N

�

N
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Table 5. Uncertainties due to alternative infection 
densities using  Weibull incubation distribution with 

median 10 years (True infection density is logistic 
prevalence)

Table 6. Uncertainties due to alternative infection 
densities using Weibull incubation distribution with 
median 15 years (True infection density is logistic 

prevalence)

The log-logistic and root exponential models tend to
give expectedAIDS cases, which are significantly different
from the observed AIDS cases, and hence the chi-square
values are very high. Also the projected AIDS under these
infection densities are very low compared to other curves.
The minimum size of the epidemic estimated using
exponential and double exponential are very high
compared other curves. But the projected values under
these two models are comparable to other models. Due to
very high values under these two models the coefficient
of variation for is very high. Similarly the coefficient of
variation for projected AIDS cases is inflated due to under
estimates for two infection densities. For projection of
AIDS cases it seems one can use logistic prevalence,
logistic incidence, double exponential or exponential
curves.

In the case of data generated assuming a median of
10 years, the changes in the incubation period very much
affect only the minimum size of the epidemic. The
coefficient of variation, which is in the order of 18 % under
the true model accounting for variations in the incubation
period, rises up to 65 % if the infection densities are also
varied. The backcalculation estimate of the total epidemic
size is very much affected by the changes in the incubation
period. But the projected values are somewhat stable even
if the incubation periods are changed. The present
simulation study reveals an important aspect of
backcalculation. The infection density has been to chosen
judiciously. Based on the six parametric infection densities
the simulation shows that the estimates are very much
affected for wrong choice of the infection densities. The
same pattern of uncertainty is reflected even in the case of
median incubation period with 15 years. The coefficient of
variation is also reflects the same in both cases.

VI. CONCLUSION

The simulation study has been attempted to quantify
the uncertainties due to incubation period distributions and
infection densities. Under the simple backcalculation
methodology it has been observed that one can obtain
reliable estimate of the projected AIDS cases under
various choices of incubation period distributions.

But parametric infection density curve adds a larger
source of uncertainty. Among the six models considered
as infection density, except log-logistic and root
exponential densities all other models give consistent
values for and projected AIDS cases. In the absence of
prior knowledge about infection density it is better to go for
various choices of infection densities to obtain and
projection ofAIDS epidemic.

Projection of AIDSIncidence

Curve Parameters

�

N
2�

2003 2004 2005 2006

Logistic
Prevalence

1� =   1.7749

2�=-19.7799

3�=    0.3344

4055786     0.00 217533 303885 424511 593018

Logistic
Incidence

1� =   1.5032

2�=-19.8607

3�=   0.3342

4788710    0.00 220568 308126 430437 601296

Double
Exponential

1�=   1.1770

2�=  6.4198

3�= -0.0005

7170988    0.39 220227 307329 428800 598171

Log-logistic
1� = 0.0004

2�=  4.5026

4462734 16719.29 179363 224248 277159 338973

Exponential
1�=   .7155

2�=  0.3342

7198742      0.00 220467 308028 430349 601178

Root Exponential
1� =  1.1453

2�=  7.8098

 4289022 9060.42 187019 238715 301757 378059

C.V - 49.73 - 10.10 15.18 20.23 25.12

Projection of AIDSIncidence
Curve Parameters

�

N
2�

2003 2004 2005 2006

Logistic
Prevalence

1�=

1.79410

2�=-

19.86990

3�=

0.33430

4012478     0.00 97176 135802 189752 265110

Logistic
Incidence

1�=

1.80540

2�=-

23.52610

3�=

0.33120

4562066 7.27 112554 156810 218431 304237

Double
Exponential

1�=

1.17700

2�=

6.41987

3�= -

0.00054

8201781 9.34 112402 156451 217689 302812

Log-logistic
1�=

0.00013

2�=

4.27507

4784651
6532.80

93596 113411 139465 181194

Exponential
1�=

4.14553

2�=

0.33119

8236217       7.12 112432 156746 218358 304142

Root
Exponential

1�=

1.43810

2�=

7.41743

3707713 3733.29 97061 124501 158150199093

C.V - 67.23 - 12.30 14.49 18.18 21.25

�

N

�

N
�

N

�

N

�

N

�

N
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