
Abstract

Systems need to run a larger and more diverse set of applications, from real time to interactive to batch, on uniprocessor &
multiprocessor platforms. The tasks that are scheduled using proportional share concept, assigns a weight randomly. This
paper suggests a mechanism which assigns a weight based on the resource requirement of an application. The problem of
inferring application resource requirements is difficult because the relationship between application performance and resource
requirement is complex and workload dependent. We present a measurement-based approach to resource-inference
employing online measurements of workload characteristics and system resource usage to estimate application resource
requirements. These requirements are translated to appropriate weights and to modify these weights dynamically by
employing weight readjustment algorithm.

Key words: Multiprocessor, Operating Systems, Proportional Share Schedulers, Resource Inference.

A Mechanism for Dynamic Weight Assignment by Inferring Processing Requirement of an Application
1 2

JYOTHI VL , SRIVATSA SK
1
Research Scholar

Sathyabama University
2

Senior Professor
St.joseph's College Of Engg.,

67Journal on Information Sciences and Computing, Vol.1, No.1, December 2007

I. INTRODUCTION

Today's Internet services have ever-increasing
scalability demands. Modern servers must be capable of
handling tens or hundreds of thousands of simultaneous
connections without significant performance degradation.
Current commodity hardware is capable of meeting these
demands, but software has lagged behind. In particular,
there is a pressing need for a programming model that
allows programmers to design efficient and robust servers
with ease.

There has been much recent work on scheduling
techniques that ensure fairness, temporal isolation and
timeliness among tasks scheduled on the same resource.
Much of this work is rooted in an idealized scheduling
abstraction called generalized processor sharing [1].
Under GPS, scheduling tasks are assigned weights, and
each task is allocated a share of the resource in proportion
to its weight. Proportional share resource management
provides a flexible and useful abstraction for multiplexing
processor resources among a set of clients with
associated weights. However, the weights for a task are
assigned randomly and cpu is proportionally shared
among these tasks. The primary problem that encountered
is that any arbitrary weight assignment is feasible for
uniprocessor but only certain weights are feasible for
multiprocessors. Those weight assignments in which the
bandwidth assigned to a single thread exceeds the
capacity of a processor are infeasible[2]. Hence a
mechanism has to be designed to assign a weight for an
application based on the resource requirement of an
application.

The mechanism operates by periodically
measuring the progress of an application. The determined

progress rate is then translated to the appropriate weight
and assigned to the application[3]. With the accurate
weight assignment, the application can be scheduled
using proportional schedulers. This paper focuses on
design of a tool which allows the user to determine
processing requirements of application (for instance, by
application profiling), and translate this requirement to
appropriate weights and to modify this weight dynamically
by employing statistical mechanism to calibrate the target
progress rate.

Performance measurements indicate that this
mechanism is very effective in determining the progress
rate of an application and also it can be combined with a
proportional share scheduling algorithm to determine the
accurate weight of an application. In the course of
execution, a feasible weight assignment may become
infeasible or vice versa whenever a thread blocks or
becomes runnable. To address this problem, we have
developed a dynamic weight adjustment algorithm that is
invoked every time a thread blocks or becomes runnable.

The rest of this paper is structured is as follows.
Section 2 deals with the related work. Section 3 presents
the system architecture. Section 4 presents the design of
the mechanism. Section 5 presents dynamic weight
adjustment algorithm. Section 6 presents the results of our
experimental evaluation and we present our conclusion in
section 7

II. BACKGROUND AND RELATED WORK

Many approaches to process regulation have
been proposed and implemented, such as scheduling for
specific times, running as a screen saver, scanning the
system process queue, and various resource-specific
methods[4]. These approaches vary considerably in their

generality, complexity, and invasiveness. Our approach is
merely another design point in the overall problem space.

Another approach is to run low-importance
processes only when no high-importance processes are in
the system process queue[5]. However, a high-importance
process may be in the process queue without consuming
significant resources. For example, a database-server
application might run continuously but only require
resources when given a workload. In such a scenario, this
approach would never allow a low-importance process to
run. Our approach is resource-independent, and it
requires no kernel modifications. It works in server
environments in which high-importance applications run
continuously and receive workloads at unpredictable
times. These features differentiate it from previous
approaches.

The basic idea for progress-based regulation of
an application was inspired by the feedback regulation
used to control congestion in TCP[6]. TCP uses
exponential suspension and linear resumption on all
senders so that they will share network bandwidth fairly.
The COMFORT project[7] investigated automatically
tuning the configuration and operational parameters of a
database system to improve performance. A number of
researchers have explored automatic tuning and
calibration mechanisms, in areas of CPU scheduling,
database tuning, and operating system policies.

III. ARCHITECTURAL COMPONENTS

Figure 1 shows the main architectural components.

Figure 1. System Architecture

Periodically, a process provides an indication of
its progress, through either a library call or a standard
reporting interface. A rate calculator combines this
progress indication with temporal information from a
system clock to determine the process's progress rate.
This progress rate is used for two purposes: First, it is fed
into a target calibrator, which analyzes many progress rate
measurements to determine a target rate for the process.

Second, the progress rate is fed into a rate comparator,
which compares it against the target rate from the target
calibrator. The rate comparator judges whether the
current progress rate is less than the target progress rate.
The difference in the value is transferred into
corresponding weights.

A.Core Components

The core components are measuring the
application's rate of progress, comparing this rate against
a target rate, and suspending the process when the rate
falls below target. Periodically, at times known as test
points, the control system acquires metrics of the
application's progress. Test points should be made fairly
frequently, at least once per few hundred milliseconds, so
the process can be suspended promptly when necessary.
At each test point, it calculates the elapsed time and the
progress made since the previous test point. It then
calculates the progress rate as the ratio of these two
values.

The tool compares this progress rate to a target
progress rate. The target rate is the progress rate
expected when the application is not contending for any
resources If the actual progress rate is at least as good as
the target, MS Manners judges the progress rate to be
good; otherwise, it judges it to be poor. If the progress rate
is good, the control system allows the process to continue
immediately. If the progress rate is poor, the control
system suspends the process for a period of time before
allowing it to continue. The execution is not stopped
entirely, or else there would be no way to determine when it
is okay to continue.

The time a process is suspended depends on
how many successive test points indicate poor progress.
On each test point that indicates poor progress, the
suspension time is doubled, up to a set limit. Once a test
point indicates good progress, the process is allowed to
continue, and the suspension time is restored to its initial
value.

The exponential increase makes the low-
importance process adjust to the time scale of other
processes' execution patterns. These components are
necessary for progress-based regulation, but they are not
always sufficient. For example, if progress measurements
are stochastic, directly comparing them to the target rate
may yield an incorrect judgment of the progress rate. Also,
these components do not include a method for determining
a target progress rate.

B. Statistical Rate Comparison

Progress rate can fluctuate due to several
factors, such as variable I/O timing, coarse progress

68 Journal on , Vol.1, No.1, December 2007Information Sciences and Computing

measures, and clock granularity. If the control system
directly compares progress rate to target rate, it may
frequently make incorrect progress-rate judgments,
causing inappropriate suspension or execution of the
process.

This mechanism copes with noisy measurements
by using a statistical rate comparator. Rather than making
an immediate judgment about the progress rate, the
comparator continues to collect progress-rate
measurements until it has enough data to confidently
make a judgment.

The comparator feeds each progress-rate
measurement into a statistical hypothesis test. The test
determines whether the progress rate is below the target
rate, whether it is at or above the target rate, or whether
there is not enough data to make such a judgment. In the
latter case, the process is allowed to continue until its next
test point, but the current value of the suspension time is
preserved. In this manner, the process is repeatedly
allowed to continue, and the progress rate is repeatedly
measured, until the hypothesis test determines that there
is enough data to make a judgment. At that point, a good
judgment will reset the suspension time, or a poor
judgment will double the suspension time and suspend the
process.

This technique assumes that the variability in an
application's measured progress rate is not serially
correlated.

C. Automatic Target Calibrator

Progress-based regulation requires a target
progress rate for the regulated process. Ideally, this target
rate represents the expected progress rate when the
process is not contending for resources. This ideal target
rate may change over time as properties of the resources
change; for example, file fragmentation may reduce the
ideal target rate for a process that reads files. Therefore, it
is necessary to track changes in the ideal target rate over
time. The tool automatically establishes a target rate as the
exponential average of the measured progress rate at
each test point Clearly, this approach tracks changes over
time, but it is not clear that it reflects uncontended
progress. This procedure is self-perpetuating,

IV. DESIGN OF THE MECHANISM

The design involves the following process:

A. The progress rate calculation

B. Design of target calibrator

C. Rate comparator and weight transformation

A. The Progress Rate Calculation

In this module initially the parameter of the known
application is considered and a timeslot is allotted to each
application according to previous knowledge. Periodically
test points are allocated and the progress rate at each test
point is observed. Thus the progress rate can be computed
by their exponential averaging. The key insight is that the
averaging procedure gives equal weight to each test
point's progress-rate measurement.

B. Design of Target Calibrator

Progress-based regulation requires a target
progress rate for the regulated process. Since the process
is usually suspended when the progress rate is poor, few
test points reflect poor progress. The automatic calibration
procedure described here uses exponential averaging to
track changes in the target progress rate over time. Each
time a test point occurs, the duration d since the previous
test point and the amount of progress p since the previous
test point are used to update the target progress rate r
according to the following rule:

The value of is determined by the following equation:

C. Rate Comparator and Weight Transformation

In this module the target rate and the progress
rate are compared. During the comparison if the difference
(target rate progress rate) posses a positive value then it is
transformed to the proportional weights otherwise the
application is suspended which implies a negative
progress.

Jyothi VL et al : A Mechanism for Dynamic Weight Assignment by Inferring Processing Requirement of an Application 69

r ��r + (1 – �) �p / d

�= (n – 1) / n

V. DYNAMIC WEIGHT ADJUSTMENT ALGORITHM

The weights are assigned to an application by a
mechanism, which is explained in the above section.
During the course of execution, Initial weight assignment
may become infeasible. Weight assignments in which a
thread requests a bandwidth share that exceeds the
capacity of a processor are infeasible. Moreover, a feasible
weight assignment may become infeasible or vice versa
whenever a thread blocks or becomes runnable. To
address these problems, we have developed a weight
readjustment algorithm that is invoked every time a thread
blocks or becomes runnable. The algorithm examines the
set of runnable threads to determine if the weight
assignment is feasible. A weight assigned to a thread is
said to be feasible if

This equation is referred to as the feasibility
constraint. If a thread violates the feasibility constraint (i.e.,
requests a fraction that exceeds 1/p) then it is assigned a
new weight so that its requested share reduces to 1/p.
Doing so for each thread with infeasible weight ensures
that the new weight assignment is feasible.

VI. PERFORMANCE EVALUATION

Our test machine is a Pentium IV 800-MHz
personal computer with 640KB of Base memory, 256KB of
Cache Memory and 20 GB of Hard Disk. The operating
system used is Windows XP/Windows 2000 Server.

We tested this mechanism using two processes :

I) Numerical Solver and ii) FileArchive Utility.

Progressbasedregulation for thenumericalsolver is
estimated as the count of iterated solution steps.The progress
estimated for filearchiveutility is thenumber if files it scans.For
all experiments except the calibration test, a target progress
rate isestablishedby running theapplicationonan idlesystem
until the initialcalibrationphasecompleted.

Fig. 1 illustrates the progress of a numerical
solver using this tool. The x-axis is run time. The y-axis
indicates the progress rate, expressed in the normalized
target duration between test points. Values greater than
one indicate progress above the target rate; values less
than one indicate progress below the target rate.

Figure 1. Progress of Numerical Solver

Fig. 2 shows progress of the file archive activity,
plotted against the left y-axis. For the first few hours, its
activity level is constrained. For the next few hours, the
application could theoretically be active 50% of the time,
since the dummy process is idle 50% of the overall time.

Figure 2. Progress of File Archive Utility

The following screen explains the addition of a
thread (Screen 1), addition of a processor (Screen 2). A
simulation screen with 4 process and 2 processors is
shown in Screen 3. The screen tabulates the target rate
and the compare rate and weights are assigned
accordingly. Dynamic weight assignment is also listed.

Screen 1 Addition of a thread

Screen 2 Addition of a processor

70 Journal on , Vol.1, No.1, December 2007Information Sciences and Computing

wi/�wj�1/p

Screen 3 Simulation screen

VII. CONCLUSION

This paper demonstrates the design and
implementation of a mechanism, which provides the
application designer from the tedious process of manual
tuning but also enables the target to dynamically track
sustained changes in system performance over time.
Progress-based regulation requires a fair amount of
computational machinery, including statistical apparatus
to deal with stochastic progress measurements, a
calibration mechanism to establish a target progress rate,
mathematical inference to separate the effects of multiple
progress metrics, and an orchestration infrastructure to
prevent measurement interference among multiple low-
importance processes and threads

Future work could develop a new calibration
technique that determines target rates from fewer
measurements. The non-parametric hypothesis test used
by the statistical comparator requires a minimum number
of samples to make a judgment. A parametric test could
be more responsive, but it would require modeling the
progress rate distribution for each progress metric of an
application, its CPU usage will decrease. By contrast, if it
is contending for cache lines, its CPU usage will increase.

REFERENCES

1. A.K. Parekh and R.G. Gallager. “A generalized
processor sharing approach to flow control in
integrated services networks the single node case”.
IEEE/ACM Transactions on Networling,1993.

2. A.Chandra, and P.Shenoy. “Surplus Fair Scheduling.
In Proceedings of the Fourth Symposium on
Operating System Design and Implementation”,
2000.

3. A.C.Arpaci -Dusseau and F.I .Poppvic i . 3 .
“Transforming policies into mechanisms with
infokernel. In Proc. 19th ACM Symp. Om Operating
Systems Principles, 2001.

4. C. Amza, and W. Zwaenepoel. “Specification and
implementation of dynamic web site benchmarks”.
IEEE 5th Annual Workshop on Work-load
Characterization, 2002.

5. K.Tadamura & E. Nakamae. “Dynamic process
management for avoiding the confliction between the
development of a program and a job for producing
animation frames.” 5th Pacific Conf. on Computer
Graphics and Applications, IEEE Computer Soc., p.
23-29, Oct 2001.

6. V.Jacobson. “Congestion avoidance and control.” 88
SIGCOMM, p. 314-329,Aug 1988.

7. G. Weikum, C. Hasse, A. Mönkeberg, P. Zabback.
“The COMFORT automatic tuning project,”
Information Systems 19 (5), p. 381-432, Jul 1994.

Jyothi VL et al : A Mechanism for Dynamic Weight Assignment by Inferring Processing Requirement of an Application 71

