
BI-OBJECTIVE FAULT TOLERANT MODEL FOR WORKFLOW TASK SCHEDULING
ON GRIDS

Sridevi S 1, Golda Jeyasheeli P 2

1PG student, Dept of CSE, Mepco Schlenk Engineering College, Sivakasi, India.
2Assistant Professor, Dept of CSE, Mepco Schlenk Engineering College, Sivakasi, India,

Email:L sridevi5983 @ gmail.com

Abstract
The spur of Grid computing is to aggregate the power of widely dispersed resources, and provide non-trivial
services to users. In attempts to utilize a diverse set of resources in grids proficiently, scheduling has been made.
The primary intention of scheduling is the minimization of application completion time; however, they may lead to
the usage of excess and redundant resources. Our algorithm performs the scheduling by accounting for both
completion time and resource usage. Since the performance of grid resources changes dynamically and the accurate
estimation of their performance is very difficult, our algorithm incorporates rescheduling to deal with unforeseen
performance fluctuations effectively. Also, fault tolerance is an essential part of the grid. In Grid environments,
execution failures can occur for various reasons such as network breakdown, failure or non-availability of required
resources. Fault tolerance can be achieved in grids by Over provisioning and Check pointing techniques. Since,
over provisioning violates the resource usage control, check pointing strategy is implemented in our proposed
method.

Key Words: — check pointing, fault tolerance, grid scheduling, make span, resource optimization

I. INTRODUCTION

COMPUTATIONAL grid is a hardware and
software infrastructure that provides dependable,
consistent, pervasive, and inexpensive access to
high-end computational capabilities. Recent
developments in grid infrastructure technologies make
it possible to execute large and distributed applications
on it. Many of these applications fall in the category of
interdependent task model. These classes of
applications are generally referred as workflow
applications, which are often represented as DAGs
(Directed Acyclic Graph) with nodes representing tasks
and edges representing dependencies.

Scheduling algorithms in grid platforms generally
focus on the minimization of application completion
time. However resource usage also plays an essential
role in the performance of grid. Scheduling on minimum
make span with minimal use of resources yields optimal
solution. To achieve non-trivial services from grids, an
efficient fault tolerant strategy becomes vital. Hence our
paper focuses on all these three aspects: Make span,
resource usage, fault tolerance effectively. In this paper,
we address the problem of scheduling workflow
applications in grids and propose by a novel
semi-dynamic scheduling heuristic, referred as adaptive
bi-intentional fault tolerant scheduling (ABIFTS)
algorithm.

ABIFTS algorithm statically generates the initial
schedule using an evolutionary technique. It adapts
dynamically as the performance of resources changes.
Dynamic rescheduling also occurs where there is any
fault in the scheduling process. ABIFTS can generate
an optimized schedule even in presence of resource
failure.

The main strengths of the proposed system are:
1) The good quality of output schedules with minimum
resource usage. 2) The adaptability to resource
performance fluctuations. 3) The ability to generate
efficient schedule in presence of resource failure. The
first strength is achieved by iteratively improving an
initial random schedule using a branch-and-bound
technique and mutation. The second strength is made
possible by using a rescheduling strategy. Specifically,
ABIFTS initiates a rescheduling event if a job finishes
later than expected and its late completion results in
an increase in the overall application completion time.
Rescheduling occurs with all of the remaining jobs that
are not running. The third strength is achieved by
means of check pointing strategy. Check pointing is a
technique for inserting fault tolerance into computing
systems. It consists of storing a snapshot of the current
application state and uses it for restarting the execution
in case of failures.

International Journal on Information Sciences and Computing, Vol. 4, No.2, July 2010 43

II. RELATED WORK
Since workflow scheduling in grids is similar to

the conventional task scheduling problem in tightly
coupled heterogeneous computing systems, some
well-known task scheduling algorithms like HEFT [2]
have been adopted and modified for grid scheduling.
Most modifications deal with the dynamic nature of
grids. Two approaches adapted from traditional task
scheduling algorithms fall into the look-ahead category
and just-in-time category. The major difference between
these categories is whether scheduling decisions are
made before the actual job dispatch or at the time any
ready jobs are identified. For look-ahead approaches,
the acquisition of accurate performance information on
resources plays a critical role in their decision making.
The drawback of just-in-time approaches is the loss of
timely data transfers. For example, provided that a job
has three predecessors and they complete at different
times, the data transfers from these predecessors to
the job start at the time the last predecessor completes
its execution. Here, the time between the times the first
two predecessors are completed and the time the last
predecessor is completed is wasted.

III. PROPOSED WORK
A. System Model

The grid in the current study consists of a
number of sites each of which has m computational
hosts. Each site is an autonomous administrative
domain that has its own local users who access the
resources provided by it. These sites are connected
with each other through a wide area network. Hosts
are composed of both space shared and time-shared
machines with various processing speeds. These
resources are not entirely dedicated to the grid. They
are used for both local and grid jobs. We assume that
hosts in the same site are able to access each other’s
data repositories as if they were accessing their own,
i.e., a set of data repositories in a site can be
represented as a single data repository. This
assumption is made because in general, a site
connects its hosts through a high-bandwidth local area
network.

The availability and capacity of resources, e.g.,
hosts and network links, fluctuates. Therefore, the
accurate completion time of a job on a particular host
is difficult, if not impossible, to determine a priori.
Moreover, the job may fail to complete due to a failure

of the resource on which it is running. At that time,
fault tolerant mechanism works. i.e., rescheduling
occurs from the check point.

Fig. 1. Grid System Model

B. Application Model
Workflow applications are essentially the same as

typical parallel programs, with one exception: a
workflow application consists of a set of interdependent
applications (not partitioned tasks of a parallel
program). Like conventional parallel programs, workflow
applications can be represented by a DAG. A DAG
consists of a set V of v nodes and a set E of e edges.
A DAG is also known as a task graph. The nodes
usually represent jobs of a workflow application, and
the edges usually represent precedence constraints. An
edge between job nsubi and job nj represents the
interjob communication. Specifically, the output of job
ni must be transmitted to job nj for job nj to start its
execution. A job with no predecessors is called an
entry job, nentry an exit job, nexit, is one that has no
successors. Among the predecessors of a job ni, the
predecessor that completes the communication at the
latest time is the most influential parent (MIP) of the
job denoted as MIP(ni). A job is called a ready job if
all of its predecessors have been completed. The
longest path of a task graph is the critical path (CP).

The weight on a job ni, denoted as wi, represents
the computation time of the job. The computation time
of a job ni on a host hj is wij. The weight on an edge,
denoted as cij represents the communication time
between two jobs ni and nj. However, the
communication time is only required when two jobs are
assigned to different hosts. In other words, the

44 International Journal on Information Sciences and Computing, Vol. 4, No.2, July 2010

communication time when they are assigned to the
same host can be ignored, i.e., it will be zero.

The average computation and communication
times of a job ni are w and c, respectively. The former
is the average computation time of job ni over all of
the hosts in a given system. The latter is the average
communication time between job ni and its successor
jobs.

C. Prioritization of jobs
Each job ni is associated with its scheduling

priority based primarily on inter job dependencies. The
priority of job ni can be computed using different job
prioritization methods. One of the common methods is
b-level computation.

The b-level of a job is computed by adding the
computation and communication times along the
longest path from an exit job in the task graph
(including the job).

The b-level value of a job ni is defined by

b ni wi max
nj imed succ ni

Ci j b nj ... (1)

where imed_succ(ni) is the set of immediate
successor jobs of job ni. For an exit job, its average
computation time is its b-level value.

IV. SCHEDULING METHODOLOGY

A. Workflow Scheduling Problem
The scheduling problem addressed in this paper

is the scheduling of a set of interdependent jobs,
comprising a workflow application, onto a set of
heterogeneous hosts dispersed across multiple sites in
a grid. The primary goal of this scheduling is to make
as many appropriate job-host matches as possible so
that the makespan, also called the schedule length, of
a workflow application can be minimized with as little
resource usage as possible. The makespan is defined
as the amount of time taken from the time the first job
starts running to the time the last job completes its
execution. The resource usage is defined as the total
amount of resource (both computing and network
resources) times used for running a given workflow
application. We assume that the cost value between
one unit of computation time and one unit of

communication time is equal; that is, the cost ratio is
one.

B. Calculation of Start and Finish times
The earliest start and finish times of a job ni on

a host hj are defined as

EST ni, hj

0

EFT MIP ni , hk , hk H CMIP ni ,j

if ni nentry

otherwise

... (2)

EFT ni, hj EST ni, hj Wi j ... (3)

where hk H is the host executing MIP(ni). The
latest start and finish times of a job ni on a host hj
are defined as

LST ni, hj LET ni, hj Wi j ... (4)

LFT ni, hj

EFT ni

min
ni succ ni

 LST nk, hm Ci, k

if ni nexit

otherwise

... (5)

where succ ni is the set of successor jobs of job ni,
and hm is the host executing job nk.

C. Check Pointing Technique
Check pointing technique in scheduling can be

explained from the given diagram as:

Fig. 2. Use of Check points in the scheduling
process

The various check points in the scheduling
process are used to save the current status of the

A

B

C

 D

C h e ck p o in ts

B re a k p o in t

Sridevi et al : Bi-objective Fault Tolerant Model for Workflow Task ... 45

process at various points. Assume that the system fails
at the Break point. Then what will happen if no fault
tolerant mechanism is used? The entire system fails &
hence degrades the performance of grid. But if check
points are used, the system recovers from the last
check point before the occurrence of fault (break point)
and then rescheduling dynamically with the available
resources except the failed resource.

V. ABIFTS ALGORITHM
Unlike many other workflow scheduling schemes,

we consider both makespan and resource usage to be
equally important and take this into account in our
scheduling model. Efficient resource usage is crucial in
grid scheduling because 1) a grid consists of multiple
sites administered by different entities that use their
own resources for other tasks beside the grid jobs and
2) due to the fluctuations and uncertainty surrounding
sites in a grid system, lower resource usage—not
necessarily the minimization of the number of resources
used, rather the minimization of resource time— means
lower overall variance in the expected completion time
(makespan) of an application. Rescheduling is another
technique adopted to increase the practicality of
ABIFTS.

To start with, ABIFTS generates a random
schedule; this initial solution undergoes the
manipulation process of ABIFTS repeatedly for further
improvement in makespan and/or resource usage. This
schedule manipulation involves a
branch-and-bound-style technique and two types of
mutation (point and swap). Each job in the initial
random schedule is tried on each available host to
check whether any of these new matches shortens the
current makespan. If one or more matches better than
the original match are identified, the host on which the
makespan is reduced the most is selected.

Algorithm ABIFTS
Input: : A workflow application G(V,E), a set H of h hosts in grid,
#iterations g
Output: A fault tolerant schedule of G onto H

1. Compute b-level of each job ni V

2. Sort V in decreasing order of b-level value
3. Generate a random schedule S

4. while gth iteration is not reached do
5. Place check points at optimal intervals

6. for each ni V do

7. Try ni on each hj H

8. Select the best host based on make span
9. end for

10. if no improvements on the schedule then
11. Mutate the schedule with 0.5 probability
12. Continue iteration with the mutated one
13. end if
14. Reschedule from check points in case of failure
15. end while

16. Compute the ALFT of each ni V

17. while ni is not dispatched do
18. Dispatch all ready jobs
19. Remove the dispatched jobs from V
20. Wait until any job n to finish
21. if AFT(n) > ALFT(n) then
22. goto step 4
23. end if
24. end while

Fig. 3. ABIFTS Algorithm

At the end of each iteration, mutation is
considered if no improvement is made during the
current iteration. ABIFTS randomly chooses a mutation
method between point and swap mutations and
mutates each job in the schedule with a probability of
0.5—sufficient to generate substantially different
schedules. Mutation occurs only with unscheduled jobs
when rescheduling. The mutated schedule is then used
as the current schedule and becomes the strict best
schedule in the next iteration. If there have been some
improvements on the schedule in the current iteration,
iterate for further improvements. This is because
changes made to jobs with low b-level values
(low-priority jobs) may enable better job-host matches,
in the next iteration, for unchanged high-priority jobs
leading to improvement in the quality of the current
schedule as well as the best schedules. This schedule
manipulation process repeats for a predefined number
of iterations.

The status of the process is recorded at regular
intervals using check points and can be used in case
of failure. If failure occurs, the scheduling process can
recover from the nearest check point using the
rescheduling strategy. If no failure occurs, the schedule
proceeds in the normal fashion.

Now, jobs in the best schedule are dispatched to
their assigned hosts as they become ready, i.e., their
predecessor jobs have finished. During this actual job
dispatch process, there might be cases in which some
jobs are delayed—for unacceptably long—to complete
their execution. These will trigger rescheduling events.

The actual latest start and finish times of a job
ni on a host hjare defined as

46 International Journal on Information Sciences and Computing, Vol. 4, No.2, July 2010

ALST ni, hj ALFT ni, hj Wi j ... (6)

ALFT ni, hj

AFT ni

Min Min
ni succ ni

 ALST nk, hm ci k , ALST nnext, hj

if ni nexit

otherwise

... (7)

where ALST(nnex ,hj) is the actual latest start time of
the next job scheduled after ni on the same host hj.
The ALFT of a job is an indicator of whether the delay
in the completion of the job is acceptable. In other
words, the late completion of a job does not affect the
makespan of a given workflow application as long as
the time of the completion is no later than the actual
latest finish time of the job; hence, the delay is
acceptable.

VI. SIMULATION RESULTS
In my work, I have considered a set of 26 tasks

scheduled in three hosts with varying processing
power. Simgrid simulator is used for the simulation of
the scheduling process. The task graph is given below:

Fig. 4. Sample task graph

Table 1. Computation time of each task

A – 16 B – 20 C – 18 D – 15

E – 14 F – 26 G – 42 H – 22

I – 12 J – 40 K – 12 L – 12

M – 14 N – 19 O – 17 P – 23

Q – 12 R – 25 S – 6 T – 4

U – 10 V – 20 W – 18 X – 16

Y – 14 Z – 12

The tasks are represented as circles. The
interdependencies between jobs are represented by the
edges. For example, in the above graph, I is dependent
on A. The numbers in edges denote the communication
time between the jobs. The computation time of each
tasks is tabulated separately.

Chart 1. Graphical representation of scheduling
outputs

The results are analyzed and represented as
time-line chart as given below. Here time and
workstations are taken in x and y axis respectively.

VII. RESULT ANALYSIS
The same algorithm is applied to various task

graphs and corresponding optimal schedules are
obtained. The collected results are tabulated as follows:

Table 2. Comparative results for various
schedules

Number
of
Tasks
taken

Number
of
resources
in the
grid

Schedule
length

+ Efficiency
improvem
ent in %

Random
Schedule

ABIFTS
schedule

26 3 27.725 23.25 45.6%

19 4 18.32 11.892 39.3%

10 3 17.625 12.124 40.7%

35 4 29.567 24.127 44.9%

The graphs representing the effect of using fault
tolerant mechanism (check point) is charted below:

Sridevi et al : Bi-objective Fault Tolerant Model for Workflow Task ... 47

Graph 1. Efficiency of the schedule in presence of
failure

From graph1 we infer that the efficiency of the
entire scheduling process degrades completely in case
of failure of at least one resource.

Graph 2: Efficiency of the schedule in presence of
failure by using check points

From graph2 we infer that the efficiency of the
process decreases to some extent in case of resource
failure. However, it improves gradually since
rescheduling occurs from the check point. The gap
between two peaks is referred as the rescheduling
time.

VIII. CONCLUSION
From the above results, we can conclude that

the ABIFTS algorithm can be used to provide an
optimized schedule both by make span (completion
time) and resource usage. And also, it can provide high
efficiency in case of resource failures. Hence, we are
able to get an optimized fault tolerable schedule which

yields greater efficiency compared to other existing grid
scheduling approaches.

REFERENCES
[1} Lee Y.C., Subrata, R., Zomaya, A.Y., Sep. 2009“On the

Performance of a Dual-Objective Optimization Model
for Workflow Applications on Grid Platforms,” IEEE
Trans. Parallel and Distributed Systems, vol. 20, no.
9, pp. 1273 - 1284.

[2] Topcuoglu H., Hariri S., and M. Wu, Mar. 2002.
“Performance-Effective and Low-Complexity Task
Scheduling for Heterogeneous Computing,” IEEE
Trans. Parallel and Distributed Systems, vol. 13, no.
3, pp. 260-274.

[3] Bozdag D., Catalyurek U., and Ozguner F., Apr. 2005
“A Task Duplication Based Bottom-Up Scheduling
Algorithm for Heterogeneous Environments,” Proc. 19th
Int’l Parallel and Distributed Processing Symp. (IPDPS
’05).

[4] Legrand A., Marchal L., and Casanova H., 2003
“Scheduling Distributed Applications: The SimGrid
Simulation Framework,”Proc. Third IEEE/ACM Int’l
Symp. Cluster Computing and the Grid (CCGrid ’03),
pp. 138-145.

[5] Sanguthevar Rajasekaran and John Reif “Handbook of
Parallel Computing Models, Algorithms and
Applications”

[6] Baghavathi Priya S., Prakash M, Dhawan Dr.K.K, 2007
“Fault Tolerance-Genetic Algorithm for Grid Task
Scheduling Using Check point” IEEE Proc. 6th

International conference on Grid and Cooperative
Computing.

[7] http://simgrid.gforge.inria.fr

Sridevi.S received her B.E. degree in
Information Technology from Madurai
Kamaraj University, Madurai, Tamil
Nadu, India in 2004. She has worked
as a lecturer in the Department of
Information Technology with Sri
Kaliswari College, Sivakasi, India
during the year 2005 – 2006. Now
she is pursuing her M.E. degree in

Computer Science and Engineering with Mepco
Schlenk Engineering College, Sivakasi, Tamil Nadu,
India. She has attended 2 National Conferences and 1
International Conference. Her field of research interest
includes Grid computing and scheduling.

E ffi c ien c y o f th e s c h ed u le in p resen c e of fa ilu re
w ith ch e ck p o in t in g s tr a teg y

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

48 International Journal on Information Sciences and Computing, Vol. 4, No.2, July 2010

