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Abstract 

 A feed forward back propagation neural network is most commonly used to the form of artificial neural network. This 
algorithm being a correct procedure, it accurate result in the neural network. The estimate of this method as the training of 
Neural Network is compared with that of genetic algorithm, that the form of based on estimate the software effort estimation. 
The comparison of two methods is used to accuracy of the software effort estimation. 
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I. INTRODUCTION 

Software effort estimation is the prediction of hours 

of work is done and the number of workers needs to 

develop a project [2].The machine learning method by 

using the neural networks. A neural network has been 

found as one of the best techniques for software cost 

estimation. Numerous researchers and scientists are 

constantly working on developing new software cost 

estimation techniques using neural networks. Adaptive 

learning machine based on neural network to estimate 

the software cost using COCOMO model. Feed forward 

back propagation has a multi-layer architecture with one 

or more hidden layer(s) between its input and output 

layers [3]. A genetic algorithm (GA) is a search technique 

used in computing to find true or approximate solutions to 

optimization and search problems. Genetic algorithms are 

categorized as global search heuristics. Genetic 

algorithms are a particular class of evolutionary 

algorithms that use techniques inspired by evolutionary 

biology such as inheritance, mutation, selection, and 

recombination. This paper investigates the efficiency of 

FFBPNN and GA in terms of coverage the accuracy for 

training a neural network can estimate the software effort 

estimation. 

II. ARTIFICIAL NEURAL NETWORK 

Artificial neural systems can be considered as 

simplified mathematical models of brain-like systems and 

they function as parallel distributed computing networks. 

However, in contrast to conventional computers, which 

are programmed to perform specific task, most neural 

networks must be taught, or trained. They can learn new 

associations, new functional dependencies and new 

patterns. The main idea for the field of Neural Networks 

(NN) originated from the desire to produce artificial 

systems capable of sophisticated, perhaps “intelligent”, 

computations similar to the biological neurons in brain 

structures. Neural networks consist of layers of 

interconnected nodes, where each node produces a non-

linear function of its input [17]. The nodes in the network 

are divided into the ones from the input layer going 

through the network to the ones at the output layer 

through some nodes in a hidden layer. The NN process 

starts by developing the structure of the network and 

establishing the technique used to train the network with 

using an existing data set. Therefore, there are three 

main entities: the neurons (nodes), the interconnection 

structure, and the learning algorithm. The most common 

technique in the use of the neural network for prediction 

is known as back-propagation trained feed-forward 

networks. Neural networks have been used in the 

software reliability modelling domain as well as software 

risk analysis[18]. Neural network architectures are divided 

into two groups: 

feed-forward networks where no loops in the 

network path occur and 

feedback networks that have recursive loops of 

the different architectures, 

the feed-forward back propagation is the most 

commonly used in the algorithm[19]  An Artificial neural 

network is usually defined as a network composed of a 

International  Journal on Information Sciences and Computing,      Vol  8   No. 1     January    2014                                                                                                                               9



large number of simple processors (neuron) that are 

massively interconnected, operate in parallel, and learn 

from experience. These are the primary known 

characteristics of biological neural system that are the 

easiest to exploit in artificial neural system. The input 

units are merely distribution units, which provide all of the 

measured variables to all of the neurons[16]. Neural 

networks training time is very much affected by the size 

of the training data and by the network architecture. 

Large numbers of records. high bmensionality of each 

record. number of layers in the network, and number of 

artificial neurons, are all important factors that affect the 

amount of training time a model[15]. Many different 

models of neural network have been proposed for 

software effort estimation. The feed forward with Back 

propagation learning algorithm are most commonly used 

in the effort estimation area. The networks are connected 

in the neurons are arranged in layers in to the forms in 

shown in figure 1. This paper network generates output 

(effort) by back propagation is initial inputs (attributes) 

through subsequent layers of processing element to the 

output layer[4]. 

The use of the neural network approach to estimate 

the software effort requires certain decisions and choices 

about the architecture, learning algorithm and the 

activation functions [5]. 

Fig.  1 Neural Network Architecture for Software Development 
Effort 

A. Feed Forward Back Propagation Network 

The back propagation (BP) algorithm was developed 
by Paul Werbos in 1974. Based on LMS algorithm, BP 
applies a weight correction to the neural network 
connection weights which is proportional to the partial 
derivative of the error function [2]. This adjustment to the 
weights is in the negative direction of the gradient of the 
error (steepest descent). 

The error function is defined as:    =  . ²     (1) 

Where e(t) is the error value, i.e. the difference 

between the actual output of the plant and the estimated 

neuro identifier output. The neuro identifier weights are 

adjusted according to: 

   = - η.                                    (2) 

where η is the learning rate parameter. A large 

learning rate might lead to oscillations in the convergence 

trajectory, while a small learning rate provides a smooth 

trajectory at the cost of slow convergence speed. Back 

propagation can be applied in two modes: sequential and 

batch mode. The former is the online mode of training a 

neural network, where weight updating is performed after 

the presentation of each training sample, while in the 

latter the weight matrices are updated after the 

presentation of all the training samples that constitute an 

epoch [1]. 

Fig. 2 Multi-Layer Feed Forward Back propagation Neural 
Network 
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III. GENETIC ALGORITHM 

Genetic Algorithms are search algorithms that are 

based on concepts of natural selection and natural 

genetics. Genetic algorithm was developed to simulate 

some of the processes observed in natural evolution, a 

process that operates on chromosomes (organic devices 

for encoding the structure of living being). The genetic 

algorithm differs from other search methods in that it 

searches among a population of points, and works with a 

coding of parameter set, rather than the parameter values 

themselves. It also uses objective function information 

without any gradient information. The transition scheme 

of the genetic algorithm is probabilistic, whereas 

traditional methods use gradient information. Because of 

these features of genetic algorithm, they are used as 

general purpose optimization algorithm. They also 

provide means to search irregular space and hence are 

applied to a variety of function optimization, parameter 

estimation and machine learning applications [6]. 

Genetic algorithm was used to fine tune the weights of 

the modification. The initial weight-vector was set by 

our developer experience. The algorithm was iterated on 

the basis of previously set scenario. Our assumption was 

that the genetic algorithm should converge to the suitable 

weights, which should provide a more accurate 

estimation. As previously described, a weighted sum of 

the count of modification group was used as the target 

function. A genetic algorithm (ga) was used to fine tune 

the weights of each group. The individuals identified by its 

chromosome, which is a vector over the real numbers 

with the same dimension. In the model each chromosome 

represents a weight-vector, and every element 

determines the weight of a single modification group. The 

fitness value is calculated for each individual by 

evaluating the model with the weights defined in that 

particular individual. The final goal of the ga is to improve 

the precision of the model. For classification problems, 

the F-measure value can give a reliable approximation of 

the accuracy. The base model was not enhanced with the 

ga, but it was evaluated using the F-measure. Thus the 

F-measure was chosen to be the fitness value of the ga. 

An evolution step starts with the breeding process which 

consists of two steps, first, the ga selects the two best 

entities with its fitness value. The crossover operator will 

apply only this pair. Every call of the crossover operator 

produces exactly one child. The algorithm repeats the 

operation to produce more than one child. We used a 

uniform crossover logic.  

During the crossover the algorithm iterates via the 

elements of the chromosome (vector) and randomly 

chooses an element from one of the two parents. Every 

element has the same chance to be copied into the 

child's chromosome . The chromosome of the children is 

subject to mutation. A lower limit and an upper limit were 

determined for the weights of the groups. During the 

mutation some elements (weights) of the chromosome 

change. The algorithm gets the half of the distance 

between the limits and the current selected weight and 

sets the current value either to the lower or to the upper 

half point. This way, the two limits are never exceeded. 

Then, the child is included in the population. The 

individuals with the worst fitness value are killed 

(removed from the population) to maintain the size of the 

population, this way the current evolution step is 

completed and the algorithm proceeds to the next 

generation [20]. 

Selection is based on fitness, i.e. the fitter an 

individual the greater the chance for this individual to get 

selected for reproduction and contribute offspring for the 

next generation. 

To generate good offspring, a proficient parent 

selection mechanism is necessary. This is a process 

used to determine the number of trials for one particular 

individual used in reproduction. The chance of selecting 

one chromosome as a parent should be directly 

proportional to the number of offspring produced and 

presented three measures of performance of selection 

algorithms, bias, spread, and efficiency. Bias defines the 

absolute difference between actual and expected 

selection probabilities of individuals. Spread is the range 

in the possible number of trials that an individual may 

achieved. Efficiency is related to the overall time 

complexity of the algorithms. Roulette wheel selection 

tends to give zero bias but potentially inclines to spread 

unlimitedly. It can generally be implemented with time 

complexity of the order of N log N where N is the 

population size. Stochastic universal sampling (SUS) is 

another single-phase sampling algorithm with minimum 
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spread, zero bias and the time complexity of SUS is in 

the order of N [SI. There are other methods can be used 

such as the ranking scheme [21]. This introduces an 

alternative to proportional fitness assignment. The 

chromosomes are selected proportionally to their rank 

rather than actual evaluation values. It has been shown to 

help in the avoidance of premature convergence and to 

speed up the search when the population approaches 

convergence [22]. 

Crossover operator takes two chromosomes and 

swaps part of their genetic information to produce new 

chromosomes. Although one-point crossover was 

inspired by biological processes, it has one major 

drawback in that certain combinations of schema cannot 

be combined in some situations [23]. A multipoint 

crossover can be introduced to overcome this problem. 

As a result, the performance of generating offspring is 

greatly improved. An example of this operation is 

depicted in where multiple crossover points are randomly 

selected. Another approach is the uniform crossover. This 

generates offspring from the parents based on a 

randomly generated crossover mask. The operation is 

demonstrated in the resultant offspring contains a mixture 

of genes from each parent. The number of effective 

crossing points is not fixed, but will be averaged at L/2 

(where L is the chromosome length). 

The preference of which crossover techniques to 

use is arguable. However, [24] concluded that a two-point 

crossover seemed to be an optimal number for multipoint 

crossover. This has since been contradicted by [loll as 

two-point crossover could perform poorly in a situation 

where the population has largely converged because of 

reduced crossover productivity. This low-crossover 

productivity problem can be resolved by the proposal of 

reduce-surrogate crossover [25]. Since the uniform 

crossover exchanges bits rather than segments, it can 

combine features regardless of their relative locations. 

This ability may outweigh the disadvantage of’ destroying 

building blocks and make uniform crossover a superior 

operator for some problems [26]. reports on several 

experiments for various crossover operators.  A general 

comment is that each of these crossovers is particularly 

useful for some classes of problems and quite poor for 

others, except that one-point crossover is indicated as a 

“loser” experimentally. Some other problem-based 

crossover techniques have been proposed. described a 

partially matched crossover (PMX) for the order-based 

problem.  designed an “analogous crossover” for robotic 

trajectory generation. Therefore, the use of a crossover 

technique to improve the offspring production, is very 

much problem oriented. All in all, there is no unified view 

on this front [27]. 

Mutation is implemented by occasionally altering a 

random bit in a string before the off springs are inserted 

into the new population [7]. Mutation adds new 

information in a random way to the genetic search 

process and ultimately helps to avoid getting trapped at 

local optima. It is an operator that introduces diversity in 

the population whenever the population tends to become 

homogeneous due to repeated use of reproduction and 

crossover operators. Mutation may cause the 

chromosomes of individuals to be different from those of 

their parent individuals. Mutation in a way is the process 

of randomly disturbing genetic information. They operate 

at the bit level; when the bits are being copied from the 

current string to the new string, there is probability that 

each bit may become mutated. This probability is usually 

a quite small value, called as mutation probability pm. A 

coin toss mechanism is employed; if random number 

between zero and one is less than the mutation 

probability, then the bit is inverted, so that zero becomes 

one and one becomes zero. This helps in introducing a 

bit of diversity to the population by scattering the 

occasional points.  

This random scattering would result in a better 

optima, or even modify a part of genetic code that will be 

beneficial in later operations. On the other hand, it might 

produce a weak individual that will never be selected for 

further operations. The need for mutation is to create a 

point in the neighbourhood of the current point, thereby 

achieving a local search around the current solution. The 

mutation is also used to maintain diversity in the 

population. It can be noticed that all four strings have a 0 

in the left most bit position. If the true optimum solution 

requires 1 in that position, then neither reproduction nor 

crossover operator described above will be able to create 

1 in that position. The inclusion of mutation introduces 

probability pm of turning 0 into 1. These three operators 

are simple and straightforward. The reproduction operator 

selects good strings and the crossover operator 
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recombines good sub-strings from good strings together, 

hopefully, to create a better sub-string. The mutation 

operator alters a string locally expecting a better string. 

Even though none of these claims are guaranteed and/or 

tested while creating a string, it is expected that if bad 

strings 8 are created they will be eliminated by the 

reproduction operator in the next generation and if good 

strings are created, they will be increasingly emphasized. 

Further insight into these operators, different ways of 

implementations and some mathematical foundations of 

genetic algorithms can be obtained from GA literature. 

Application of these operators on the current population 

creates a new population. This new population is used to 

generate subsequent populations and so on, yielding 

solutions that are closer to the optimum solution. The 

values of the objective function of the individuals of the 

new population are again determined by decoding the 

strings. These values express the fitness of the solutions 

of the new generations. This completes one cycle of 

genetic algorithm called a generation. In each generation 

if the solution is improved, it is stored as the best solution 

[28]. 

Control parameters: We can visualize the functioning 

of GAs as a balanced combination of exploration of new 

regions in the search space and exploitation of already 

sampled regions. The balance, which critically controls 

the performance of GAs is determined by the right choice 

of control parameters: the crossover and mutation 

probabilities and population sizes. The trade-offs that 

arise are: 

Increasing the crossover probability increases the 

recombination of building blocks, but it also 

increases the disruption of good strings. 

Increasing the mutation probability tends to 

transform the genetic search into a random 

search, but it also helps reintroduce lost genetic 

material. 

Increasing the population size increases its 

diversity and reduces the probability that the GA 

will prematurely converge to a local optimum, but it 

also increases the time required for the population 

to converge to the optimal regions in the search 

space. 

IV. EXPERIMENTAL RESULT 

The experimental result following a research and 

optimization in the form of different data sets, we have 

treated a datasets in order to obtain the accuracy of effort 

estimation and more difficult interpretable than models of 

other techniques[11]. The other techniques are more 

exactly accurate result in compare the neural network 

and genetic algorithm. 

The result show the accuracy of simplified model 

(BPNN) remains acceptable compared with optimizes 

neural network model. We define several input 

parameters to estimate the accuracy of the soft ware 

effort estimation of the project. The back propagation 

neural network (BPNN) and the genetic algorithm 

simulated using Matlab software. We defined the network 

of input parameters to calculate the performance of each 

network.  

The two models of compared to the methods of 

determining the connection weight and bias 

transformation describes the average prediction the 

accuracy of each model for different types of datasets. 

the optimized accuracy of BPNN increase the accuracy 

for training and testing data sets. It is accurate to 

compare the prediction accuracy between the training 

and testing datasets holdout the data compared in other 

models. This result may predict the accuracy in the 

software effort estimation datasets. 

V. PERFORMANCE CRITERION 

There are several measurements used in the 

literature to evaluate the accuracy of prediction methods 

in software effort estimation tasks. In this paper we 

employ the two measurements that are most commonly 

used in the form of Error and Accuracy of MMRE and 

PRED (25%) [8]. 

The MMRE values calculated as follows; 

MRE=Mean Relative Error. 

MMRE= Mean Magnitude of Relative Error. 
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PRED(25) is the percentage of predictions that fall 

within 25% of the actual value. 

The PRED (25%) values calculated as follows; 

                

PRE=Predictions. 

PRED=Percentage of Predictions. 

VI. RESULTS 

For experimental analysis, we have chosen 7 

random projects from NASA data set. It shows that the 

proposed model has MMRE less than NN and GA model 

as shown in Figure 3. The comparisons between the 

results is shown in table 1. 

TABLE 1: COMPARISONS OF RESULTS 

DATA SETS  MMRE  PRED 
(25%) 

NASA 0.5128 80.6452 

ALBERCHET 0.749 93.38 

DESHARNAIS 0.1672 79.03 

TELECOM 0.3668 46.1538 

MAXWELL 0.5220 47.7273 

HALLMARK 0.1103 88.88 

 Fig. 3 Comparison of Different Models of MMRE 

Fig. 4 Comparison of Different Models of PRED 

VII. CONCLUSIONS AND FUTURE WORK 

The software cost estimation to calculate the 

accuracy and error for the form of MMRE and PRED 

(25%) for the given datasets. The all dataset can be 

calculate the separate values of error measure in the 

form of MMRE and PRED (25%) for software cost 

estimation[9].  

Accuracy error measures has been obtained 

successfully by neural network with genetic algorithm. 

The Genetic Algorithm and Back Propagation algorithm to 

calculate the Accuracy and Error in the Software Effort 

Estimation. It can be used to another technique for Radial 

Basis Function network and Particle Swarm Optimization 

for calculating Accuracy and Error in the Software Effort 

Estimations. 
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