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Abstract

An attempt is made to predict the daily closing prices of BSE data which is highly fluctuating. The variables
considered were found to be non normal as evidenced from Multivariate Omnibus test. Hence instead of Classical
Multivariate Statistical procedures, the Non parametric Neural Network model with the new set of independent
variables using Principal Component Analysis was used to predict the daily prices. The predictive ability of each
model is measured using standardized error measures.
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I. INTRODUCTION

Financial Forecasting or specifically Stock Market
prediction is one of the hottest fields of research lately
due to its commercial applications owing to the high
stakes and the kinds of attractive benefits that it has
to offer. Mining stock market tendencies is a
challenging task due to its high volatility and noisy
environment. Technically the stocks prices are
evaluated by analyzing statistics generated by market
activity, past prices, and volume. It looks for peaks,
bottoms, trends, patterns, and other factors affecting a
stock’s price movement. Future values of stock prices
often depend on their past values and the past values
of other correlated variables.

There are many technical indices used in stock
market prediction. Moving Average, Exponential Moving
Average, Weighted Moving Average, Moving Average
Difference Oscillator, Relative Strength Index, Volume,
Volume Change, Moving Average
Convergence-Divergence, Momentum, Rate of Return,
Advance-Decline, Upside-Downside Volume Ratio,
High-Low Differential Index, High-Low Ratio, Volume,
and Historical Volatility are some examples. There are
many variations of these and new index terms may be
derived from them. Each index has its own meaning
and interpretation. A comprehensive description of
technical stock market indicators can be found
Robert[12]. For technically analyzing the BSE Stock
Index data the variables daily opening, high, low and
volume of transaction were considered from 1st January
2009 till 31st January 2010(260).

Traditionally forecasting research and practice
had been dominated by statistical methods Robert [11],
Richard [12]. All traditional methods require the data to
be multivariate normally distributed. Testing for
normality is a common procedure in much applied work
and many tests have been proposed Mardia [16],
D’Agostino [3] and Small [13]. The need for testing
normality in a multivariate setting is discussed by
Ganadesikan (1977), Cox and Small [1] and Cox and
Wermuth [2]. A test frequently used is the sum of
squares of the standardized sample skewness and

kurtosis, which is asymptotically distributed as a X2

variate. Multivariate Omnibus test proposed by Mardia
was considered to check the condition of normality of
the predictors.

The variables under analysis were found to be
multi collinear which is overcome by non parametric
Principal Component Analysis. The new set of
uncorrelated principal components was used as
predictors for predicting the daily closing prices of BSE
sensex data. As the dependent variables were violating
the basic assumption of normality, nonparametric neural
network modeling of the multivariate data was
accomplished. The power of neural networks is its
ability to model a nonlinear process without a priori
knowledge about the nature of the process. The idea
of prediction using neural networks is to find an
approximation of mapping between the input and output
data values through training.

The remainder of this paper is organized as
follows. In Section II brief discussion of the theoretical
issues of testing multivariate normality, Principal
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component analysis and details on research design and
methodology are provided. Results are discussed in
Section III. Finally, concluding remarks are offered in
Section IV.

II. RESEARCH DESIGN AND METHODOLOGY

A. Multivariate Normality

It is well known that many multivariate statistical
procedures, including MANOVA, discriminant analysis,
and canonical correlations, call upon the assumption of
multivariate normality. Although at least 50 tests of
multivariate normality exist, relatively little is known
about the power of these procedures. Mardia’s
skewness and kurtosis measures are recommended for
diagnosing possible deviations from normality.

Let X X1, , Xn  be a p n matrix of n

observations on a p   dimensional vector with sample

mean and covariance X n  1 X1 Xn  and

S n  1 X X where X X1 X, Xn X.

Create the n n matrix:

D dij X S  1 X [1]

And define multivariate measures of skewness
and kurtosis as:

b1p
1

n2 i  1
n

j  1
n dij

3 [2]

and

b2p
1
n i  1

n dii
4 [3]

An omnibus test based on these measures is
given by

Mp
nb1p

6
n b2p p p  2 2

8p p  2

[4]

X2 p p  1 p  2
6

 1 

A. Principal Component Analysis

Principal component analysis (PCA) technique
consists in rewriting the coordinates in a data set in
other coordinates system which will be more convenient

for analysis. This new coordinates are represented on
orthogonal axis, being obtained in decreasing variance
order. The total amount of principal components is
equal to the amount of original variables and presents
the same statistical information. The PCA is defined as
follows:

Let X x1, x2, xp  be a p dimensional

random variable. The ith principal component of X  is

yi ei x e1i x1 e2i x2 e xp [5]

i  1, 2, , p, ei ei  1

and it must satisfy the following conditions:

The variable y1 is the one whose variance
is maximum among all of the variance of
y e x

The variable yk is not correlative with

y1, y2, yk  1 k  2, 3, , p

Therefore, p principal components of p variables
are p linear combinations of the p variables, where the
coefficient vectors of the linear combinations are unit
vectors. The first principal component y1 is the variable
whose variance is maximal among the variances of the
linear combinations. The second principal component
y2 is the variable whose variance is maximal among
the variances of the linear combinations and irrelevant
with y1. The third principal component y3 is the variable
whose variance is maximal among the variances of the
linear combinations and irrelevant with both y1 and

y2, and so on.

Proportion between the variance of the kth

principal component and the sum of all deviations:

k

1 2 p
k  1, 2, p

[5]

It is called contribution rate of the principal
component yk

Correlation coefficient between yi and xj,

yi, xj

eji i

ji

i, j  1, 2, , p
[6]
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It is called as the factorial loading or the principal
component loading.

B. Multilayer Perceptron

Neural Networks [NN] have been used in function
estimation such as stock price prediction, option price
modeling, portfolio optimization and currency exchange
rate estimation (Steiner and Wittkemper [14]; Yao and
Tan [20]; Galindo [4]; Leigh et al. [7]; Hutchinson et al.
[6]; Trafalis et al. [17]. NN is a learning machine that
is designed to model the way in which the brain
performs the particular tasks. The multi-layer perceptron
(MLP) is the most widely used type of NN for function
approximation. It is both simple and based on solid
mathematical grounds. Input quantities are processed
through successive layers of “neurons”. There is always
an input layer, with a number of neurons equal to the
number of variables of the problem, and an output
layer, where the perceptron response is made
available, with a number of neurons equal to the
desired number of quantities computed from the inputs.

The layers in between are called “hidden” layers.
All problems which can be solved by a perceptron can
be solved with only one hidden layer, but it is
sometimes more efficient to use two hidden layers.
Each neuron of a layer other than the input layer
computes first a linear combination of the outputs of
the neurons of the previous layer, plus a bias. The
coefficients of the linear combinations plus the biases
are called the weights. They are usually determined
from examples to minimize, on the set of examples,
the (Euclidian) norm of the desired output – net output
vector. Neurons in the hidden layer then compute a
non-linear function of their input. The two main
activation functions used in current applications are
hyperbolic tangent and sigmoid, and are described by

yi  tan h vi

yi 1 e vi  1 [7]

in which the former function is a hyperbolic
tangent which ranges from  1 to 1, and the latter is
equivalent in shape but ranges from 0 to 1. Here yi is

the output of the ith node (neuron) and vi is the
weighted sum of the input synapses. The MLP divides
the data set in to three parts

Training - To train the Network

Testing - To prevent over training

Holdout - To access the final network.

Multilayer Layer Perceptron has rescaling option
which is done to improve the network training. There
are three rescaling options: standardization,
normalization, and adjusted normalization. All rescaling
is performed based on the training data, even if a
testing or holdout sample is defined. 

Standardization  
X  Mean

S
[8]

Normalization  
X  Minimum

Maximum  Minimum
[9]

Adjusted Normalization 

2
X  Minimum

Maximum  Minimum
 1

[10]

The units in the output layer can use any one of
the following activation function - Identity, Sigmoid,
Softmax or Hyperbolic Tangent. The activation functions
are given below

c
ec e c

ec e c

[11]

c
1

1 e c
[12]

ck
exp ck

j exp cj

[13]

c c [14]

Error Functions that are used are sum of square
error and relative error.

Sum of square error is defined as the sum of
the squared deviation between observed and the model
predicted value. Sum of Square Error, 

ET c

m  1

M

Em c                      [15] 

Where 
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Em c
1
2

r  1

R

Yr
m a1 r

m 2
[16]

Yr
m   Target vector, pattern

a1 r
m  Unit j for layer i, for i  0, 1, 2,  1 

Relative Error is the ratio of an absolute error
to the true, specified, or theoretically correct value of
the quantity that is in error,

Relative Error  
m  1

M

Yr
m Y

^
r
m

2

m  1

M

Yr
m Yr

2

[17] 

Yr   The mean of Yn
m

Standardized Error Measures used for comparing
the ability of the MLP models are

MAE
1
n

i  1

n

|At Pt|
[18]

MAPE
1
n

t  1

n
|At Pt|

At

[19]

SMAPE
1
n

t  1

n
|At Pt|

At Pt

[20]

were At is the actual value and Pt is the predicted
value.

III. RESULTS AND FINDINGS

The stock prices are highly volatile and have a
chaotic behavior. Figure 1 shows the daily closing price
curve for the period considered.

Multivariate Skewness and Kurtosis for the 260
observations,

Multivariate Skewness  48.5176

Multivariate Kurtosis  4.6701e  005

Mardia’s test statistics value

 2.9531e  011

From the test statistic value it was clear that the
variables are not normally distributed.

The variables daily opening price, high price, low
price and volume of transaction of BSE Sensex data
are found to be multi collinear in nature. Principal
component Analysis, using the covariance matrix of the
data resulted into a new set of four uncorrelated
independent variables.

Table 1 Optimal Weight of Principal Component
Variables

Variable PCA1 PCA2 PCA3 PCA4

Open 0.061 0.576 0.597  0.554

High 0.061 0.576 0.177 0.796

Low 0.063 0.570  0.782  0.243

Volume  0.994 0.106  0.002  0.001

Figure 1 Daily closing Prices of BSE Sensex

New set of four independent variables are taken
as input variables and the daily closing prices of BSE
is considered to be the target variable of MLP. Out of
the 260 observations 130 are considered for training,
32 for testing and 78 as hold out.

Initially the activation function of the hidden layer
is set to hyperbolic tangent, Identity is taken as the
activation function of the output layer, the target
variable is standardized and then the input variables
are successively smoothed (standardized, normalized
and adjusted normalized). With this architecture the
sum of square error and relative error values are found
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for training, testing and hold out. These error values
are also measured after fixing the activation function of
the output layer as hyperbolic tangent with rescaled
variables.

Finally the activation function of the output layer
is set to sigmoid. The error values are also found for
the different network as formulated above with the

activation function of the hidden layer fixed to sigmoid.
The different combinations of the activation function of
the output and the hidden layer with the three rescaling
options of the input and target variables resulted in 30
models. The models with minimum error value are
given in Table 2. The network structure of the models
with minimum error values is provided in Table 3.

Table 2 Sum of Square and Relative Error Values

Model
Training Testing Holdout

Sum of Square Error Relative Error Sum of Square Error Relative Error Relative Error

Model 1 0.07371751 9.89E-04 0.01148669 0.00100463 0.00111982

Model 2 0.0071049 8.85E-04 0.00132279 0.00107367 0.00120048

Model 3 0.00725588 9.04E-04 1.01E-03 8.17E-04 1.30E-03

Table 3 Network Structure of Optimal Models

Models
Activation Function
of the Hidden Layer

Activation Function
of the Output Layer

Rescaling of
Dependent Variable

Rescaling of
Covariates

Model 3 Hyperbolic Tangent Identity Normalized Adjusted Normalized

Model 6 Hyperbolic Tangent Identity Standardized Adjusted Normalized

Model 21 Sigmoid Identity Normalized Adjusted Normalized

Figure 2 Actual and Predicted Values

Table 4 MAE, MAPE and SMAPE Values

Partition
Model 1 Model 2 Model 3

Mae Mape Smape Mae Mape Smape Mae Mape Smape

Training 78.59152 0.00610 0.00304 129.408 0.00992 0.00496 89.3765 0.00706 0.003535

Testing 73.71611 0.00578 0.00289 119.912 0.00921 0.00460 83.9202 0.00675 0.003382

Holdout 58.41691 0.00392 0.00196 107.985 0.00720 0.00359 60.0960 0.00410 0.00205

K.V. Sujatha et al: Non Parametric Modeling ...  53



The daily closing values were predicted with the
MLP Networks having minimum error. With the
predicted values Error Measure – Mean Average Error,
Mean Absolute Percentage Error and Symmetric Mean
Absolute Percentage Error were found. From the Error
values of the MLP models given in the Table 4, the
error values are least for the Multilayer Perceptron
Model 3. The parameter estimates of the best fitted
MLP model are given in Table 5.

IV. CONCLUSION

Some procedure for assessing the assumption of
multivariate normality should be used, even if the
subsequent multivariate analyses are robust to
violations of Multivariate Normality.

The Multilayer Perceptron Model with hyperbolic
tangent as activation function hidden layer, identity as
activation function of the output layer with adjusted
normally smoothed input variables along with target
variables rescaled normally found to be more efficient
in predicting daily closing price.

Stock prices are very sensitive to the information
of politics, economy and society which are not
considered in this paper, which may influence the
prediction error if considered. Obviously the further
study of this paper is to add up additional variables to
improve the predictive ability of the model.
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